Publications by authors named "Maria Karczmarczyk"

A candidate digital PCR (dPCR)-based reference measurement procedure for quantification of human cytomegalovirus (hCMV) was evaluated in 10 viral load comparison schemes (seven external quality assessment (EQA) and three additional training schemes) organized by INSTAND e.V. over four years (between September 2014 and March 2018).

View Article and Find Full Text PDF

Non-O157 Shiga toxin-producing Escherichia coli (STECs) are not as well characterized as O157 STEC cases, despite their similar prevalence in many countries. Hence, the objective of this study was to investigate the phenotypic and genotypic basis of multidrug resistance (MDR) in non-O157 STEC farm- and abattoir-sourced isolates and assess the potential dissemination of these MDR profiles in vitro. Susceptibility testing to 20 antimicrobials was performed on 146 non-O157 STECs isolated from farm and abattoir environments.

View Article and Find Full Text PDF

Quantitative PCR (qPCR) is an important tool in pathogen detection. However, the use of different qPCR components, calibration materials and DNA extraction methods reduces comparability between laboratories, which can result in false diagnosis and discrepancies in patient care. The wider establishment of a metrological framework for nucleic acid tests could improve the degree of standardisation of pathogen detection and the quantification methods applied in the clinical context.

View Article and Find Full Text PDF

Compared to other PCR technologies, digital PCR is a potentially highly accurate approach for the quantification of nucleic acid fragments. This study describes the impact of four experimental factors, namely primer and probe chemistry, PCR amplification target, duplexing, and template type, on the measurement results obtained by reverse transcription digital PCR (RT-dPCR) of viral RNA using influenza A virus as a model. Along conventional dual labelled probes (DLP), alternative primer and probe chemistries, including Zip Nucleic Acids (ZNAs), Locked Nucleic Acids (LNAs), and Scorpions(®), were compared with two RNA template types: i) total genomic RNA extracted from cell cultured influenza A and ii) a synthetically prepared RNA transcript (In vitro transcribed RNA).

View Article and Find Full Text PDF

Background: Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive.

View Article and Find Full Text PDF

Nucleic acid-based tests for infectious diseases currently used in the clinical laboratory and in point-of-care devices are diverse. Measurement challenges associated with standardization of quantitative viral load testing are discussed in relation to human cytomegalovirus, BK virus, and Epstein-Barr virus, while the importance of defining the performance of qualitative methods is illustrated with Mycobacterium tuberculosis and influenza virus. The development of certified reference materials whose values are traceable to higher-order standards and reference measurement procedures, using, for instance, digital PCR, will further contribute to the understanding of analytical performance characteristics and promote clinical data comparability.

View Article and Find Full Text PDF

This study characterized an IncL/M-like plasmid containing a bla(OXA-48)-encoding gene from a clinical isolate of Klebsiella pneumoniae, denoted as E71T. Investigation of this plasmid sequence identified unique regions of interest along with conserved regions detected in eight other clinical carbapenem-resistant isolates. A 63-kb plasmid (pE71T) from K.

View Article and Find Full Text PDF

A blaCMY-2 -containing conjugative IncF plasmid denoted as pEQ011, previously identified in a multidrug-resistant Escherichia coli isolate of equine origin, was characterized. The plasmid consisted of 85 507 bp, with 118 predicted open reading frames. This is the first known report demonstrating the association of a blaCMY-2 gene with an IncF incompatibility-type plasmid backbone.

View Article and Find Full Text PDF

Background: Extended-spectrum β-lactamase (ESBL)-encoding genes are frequently mapped to plasmids, yet few of these structures have been characterized at the molecular level, to date.

Methods: Eighty-seven ESBL-producing Escherichia coli were isolated from fecal samples of food-producing animals and healthy humans in Switzerland from 2009 to 2011. Plasmid DNA of all isolates was purified.

View Article and Find Full Text PDF

Objectives: Nalidixic acid-resistant Salmonella enterica serovars Kentucky (n = 5) and Virchow (n = 6) cultured from individuals were investigated for the presence of plasmid-mediated quinolone resistance (PMQR) determinants.

Methods: PMQR markers and mutations within the quinolone resistance-determining regions of the target genes were investigated by PCR followed by DNA sequencing. Conjugation, plasmid profiling and targeted PCR were performed to demonstrate the transferability of the qnrS1 gene.

View Article and Find Full Text PDF

This study describes the genotypic characteristics of a collection of 100 multidrug-resistant (MDR) Escherichia coli strains recovered from cattle and the farm environment in Ireland in 2007. The most prevalent antimicrobial resistance identified was to streptomycin (100%), followed by tetracycline (99%), sulfonamides (98%), ampicillin (82%), and neomycin (62%). Resistance was mediated predominantly by strA-strB (92%), tetA (67%), sul2 (90%), bla(TEM) (79%), and aphA1 (63%) gene markers, respectively.

View Article and Find Full Text PDF

In this study, we examined molecular mechanisms associated with multidrug resistance (MDR) in a collection of Escherichia coli isolates recovered from hospitalized animals in Ireland. PCR and DNA sequencing were used to identify genes associated with resistance. Class 1 integrons were prevalent (94.

View Article and Find Full Text PDF

Eleven multidrug-resistant Escherichia coli isolates (comprising 6 porcine and 5 bovine field isolates) displaying fluoroquinolone (FQ) resistance were selected from a collection obtained from the University Veterinary Hospital (Dublin, Ireland). MICs of nalidixic acid and ciprofloxacin were determined by Etest. All showed MICs of nalidixic acid of >256 μg/ml and MICs of ciprofloxacin ranging from 4 to >32 μg/ml.

View Article and Find Full Text PDF

Ninety-three Salmonella isolates recovered from commercial foods and exotic animals in Colombia were studied. The serotypes, resistance profiles and where applicable the quinolone resistance genes were determined. Salmonella Anatum (n=14), Uganda (19), Braenderup (10) and Newport (10) were the most prevalent serovars, and resistance to tetracycline (18.

View Article and Find Full Text PDF

This article describes the methods of sample labelling and the principles of construction and application of microarrays. The examples of microarrays' application for identification of bioterrorism agents, as well as water and food contaminating bacteria and other selected microorganisms, and also antibiotic resistance testing were presented. Due to the fact that this method allows to identify thousands of genes in one experiment, the microarray assay opens new perspectives in epidemiological studies such as determination of sources of disease outbreaks, detection of new genotypes and subtypes, and examining of the geographical spread of the biological agents.

View Article and Find Full Text PDF