The Human Leukocyte Antigen (HLA) locus associates with a variety of complex diseases, particularly autoimmune and inflammatory conditions. The HLA-DR15 haplotype, for example, confers the major risk for developing Multiple Sclerosis in Caucasians, pinpointing an important role in the etiology of this chronic inflammatory disease of the central nervous system. In addition to the protein-coding variants that shape the functional HLA-antigen-T cell interaction, recent studies suggest that the levels of HLA molecule expression, that are epigenetically controlled, also play a role in disease development.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disorder. We have previously developed a disease-in-a-dish model for familial PD using induced pluripotent stem cells (iPSCs) from two patients carrying the p.A53T α-synuclein (αSyn) mutation.
View Article and Find Full Text PDFApproximately 90% of alpha-synuclein (α-Synuclein) deposited in Lewy bodies is phosphorylated at serine 129 suggesting that the accumulation of phosphorylated α-Synuclein is critical in the pathogenesis of Parkinson's disease. However, in vivo experiments addressing the role of phosphorylated α-Synuclein in the progression of Parkinson's disease have produced equivocal data. To clarify a role of Ser129 phosphorylation of α-Synuclein in pathology progression we performed stereotaxic injections targeting the mouse striatum with three fibrilar α-Synuclein types: wt-fibrils, phosphorylated S129 fibrils and, phosphorylation incompetent, S129A fibrils.
View Article and Find Full Text PDF