Membrane-bound metalloproteins are the basis of biological energy conservation via respiratory processes, however, their biochemical characterization is difficult. Here, we followed a gel-based proteomics and metallomics approach to identify membrane-associated metalloproteins in the anaerobic ammonium-oxidizing "Candidatus Kuenenia stuttgartiensis" strain CSTR1. Membrane-associated protein complexes were separated by two dimensional Blue Native/SDS gel electrophoresis and subunits were identified by mass spectrometry; protein-bound metal ions were quantified from the gel by connecting either a desolvating nebulizer system or laser ablation to inductively coupled plasma triple quadrupole mass spectrometry (ICP-QqQ-MS).
View Article and Find Full Text PDFNowadays, high-resolution imaging techniques are extensively applied in a complementary way to gain insights into complex phenomena. For a truly complementary analytical approach, a common sample carrier is required that is suitable for the different preparation methods necessary for each analytical technique. This sample carrier should be capable of accommodating diverse analytes and maintaining their pristine composition and arrangement during deposition and preparation.
View Article and Find Full Text PDFIn order to preserve iron-rich samples for arsenic speciation analysis, mineral acids or EDTA are typically added to prevent oxidation and precipitation of iron. However, when sulfide is present, and thioarsenates ([HAs(V)S(-II)nO4-n](2-), n = 1-4) can form, these methods are unsuitable due to arsenic sulfide precipitation or artifact speciation changes. Here, a new method based on separating the anionic arsenic species from cationic iron in the presence of sulfide via solid phase extraction (SPE) has been investigated.
View Article and Find Full Text PDF