Publications by authors named "Maria Juliana Calderan-Rodrigues"

Plant growth is intimately linked to the availability of carbon and energy status. The Target of rapamycin (TOR) pathway is a highly relevant metabolic sensor and integrator of plant-assimilated C into development and growth. The cell wall accounts for around a third of the cell biomass, and the investment of C into this structure should be finely tuned for optimal growth.

View Article and Find Full Text PDF

Despite its global importance as a primary source of table sugar and bioethanol, sugarcane faces a significant threat to its production due to diseases. One of these diseases, sugarcane smut, involves the emergence of a whip-like structure from the host apical shoot. The slow onset of this pathogenesis is the most substantial challenge for researchers to investigate the molecular events leading to resistance or susceptibility.

View Article and Find Full Text PDF

Plant growth-promoting bacteria (PGPB) represent an eco-friendly alternative to reduce the use of chemical products while increasing the productivity of economically important crops. The emission of small gaseous signaling molecules from PGPB named volatile organic compounds (VOCs) has emerged as a promising biotechnological tool to promote biomass accumulation in model plants (especially ) and a few crops, such as tomato, lettuce, and cucumber. Rice () is the most essential food crop for more than half of the world's population.

View Article and Find Full Text PDF

Proteome analysis of model and non-model plants is a genuine scientific field in expansion. Several technological advances have contributed to the implementation of different proteomics approaches for qualitative and quantitative analysis of the dynamics of cellular responses at the protein level. The design of time-resolved experiments and the emergent use of multiplexed proteome analysis using chemical or isotopic and isobaric labeling strategies as well as label-free approaches are generating a vast amount of proteomics data that is going to be essential for analysis of protein posttranslational modifications and implementation of systems biology approaches.

View Article and Find Full Text PDF

As autotrophic organisms, plants capture light energy to convert carbon dioxide into ATP, nicotinamide adenine dinucleotide phosphate (NADPH), and sugars, which are essential for the biosynthesis of building blocks, storage, and growth. At night, metabolism and growth can be sustained by mobilizing carbon (C) reserves. In response to changing environmental conditions, such as light-dark cycles, the small-molecule regulation of enzymatic activities is critical for reprogramming cellular metabolism.

View Article and Find Full Text PDF

The Target of Rapamycin (TOR) kinase pathway integrates energy and nutrient availability into metabolism promoting growth in eukaryotes. The overall higher efficiency on nutrient use translated into faster growth rates in C grass plants led to the investigation of differential transcriptional and metabolic responses to short-term chemical TOR complex (TORC) suppression in the model . In addition to previously described responses to TORC inhibition (i.

View Article and Find Full Text PDF

Sugarcane ( spp.), a C grass, has a peculiar feature: it accumulates, gradient-wise, large amounts of carbon (C) as sucrose in its culms through a complex pathway. Apart from being a sustainable crop concerning C efficiency and bioenergetic yield per hectare, sugarcane is used as feedstock for producing ethanol, sugar, high-value compounds, and products (e.

View Article and Find Full Text PDF

Plant cell walls mostly comprise polysaccharides and proteins. The composition of monocots' primary cell walls differs from that of dicots walls with respect to the type of hemicelluloses, the reduction of pectin abundance and the presence of aromatic molecules. Cell wall proteins (CWPs) differ among plant species, and their distribution within functional classes varies according to cell types, organs, developmental stages and/or environmental conditions.

View Article and Find Full Text PDF

Background: Sugarcane has been used as the main crop for ethanol production for more than 40 years in Brazil. Recently, the production of bioethanol from bagasse and straw, also called second generation (2G) ethanol, became a reality with the first commercial plants started in the USA and Brazil. However, the industrial processes still need to be improved to generate a low cost fuel.

View Article and Find Full Text PDF

The use of cell walls to produce cellulosic ethanol from sugarcane bagasse is a new challenge. A better knowledge of proteins involved in cell wall remodelling is essential to improve the saccharification processes. Cell suspension cultures were used for this first cell wall proteomics study of sugarcane.

View Article and Find Full Text PDF

Guignardia citricarpa is the causal agent of Citrus Black Spot (CBS), an important disease in Citriculture. Due to the expressive value of this activity worldwide, especially in Brazil, understanding more about the functioning of this fungus is of utmost relevance, making possible the elucidation of its infection mechanisms, and providing tools to control CBS. This work describes for the first time an efficient and successful methodology for genetic transformation of G.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session518rukfcf93c6pmulopds4v8973jinej): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once