For many decades to date, neuroendocrinologists have delved into the key contribution of gonadal hormones to the generation of sex differences in the developing brain and the expression of sex-specific physiological and behavioral phenotypes in adulthood. However, it was not until recent years that the role of sex chromosomes in the matter started to be seriously explored and unveiled beyond gonadal determination. Now we know that the divergent evolutionary process suffered by X and Y chromosomes has determined that they now encode mostly dissimilar genetic information and are subject to different epigenetic regulations, characteristics that together contribute to generate sex differences between XX and XY cells/individuals from the zygote throughout life.
View Article and Find Full Text PDFKdm6a is an X-chromosome-linked H3K27me2/3 demethylase that promotes chromatin accessibility and gene transcription and is critical for tissue/cell-specific differentiation. Previous results showed higher levels in XX than in XY hypothalamic neurons and a female-specific requirement for Kdm6a in mediating increased axogenesis before brain masculinization. Here, we explored the sex-specific role of Kdm6a in the specification of neuronal subtypes in the developing hypothalamus.
View Article and Find Full Text PDFSeveral X-linked genes are involved in neuronal differentiation and may contribute to the generation of sex dimorphisms in the brain. Previous results showed that XX hypothalamic neurons grow faster, have longer axons, and exhibit higher expression of the neuritogenic gene neurogenin 3 (Ngn3) than XY before perinatal masculinization. Here we evaluated the participation of candidate X-linked genes in the development of these sex differences, focusing mainly on Kdm6a, a gene encoding for an H3K27 demethylase with functions controlling gene expression genome-wide.
View Article and Find Full Text PDFHypothalamic neurons show sex differences in neuritogenesis, female neurons have longer axons and higher levels of the neuritogenic factor neurogenin 3 (Ngn3) than male neurons in vitro. Moreover, the effect of 17-β-estradiol (E2) on axonal growth and Ngn3 expression is only found in male-derived neurons. To investigate whether sex chromosomes regulate these early sex differences in neuritogenesis by regulating the E2 effect on Ngn3, we evaluated the growth and differentiation of hypothalamic neurons derived from the "four core genotypes" mouse model, in which the factors of "gonadal sex" and "sex chromosome complement" are dissociated.
View Article and Find Full Text PDFBackground And Purpose: GABA receptor functions are dependent on subunit composition, and, through their activation, GABA can exert trophic actions in immature neurons. Although several sex differences in GABA-mediated responses are known to be dependent on gonadal hormones, few studies have dealt with sex differences detected before the critical period of brain masculinisation. In this study, we assessed GABA receptor functionality in sexually segregated neurons before brain hormonal masculinisation.
View Article and Find Full Text PDF17β-estradiol (E2) induces axonal growth through extracellular signal-regulated kinase 1 and 2 (ERK1/2)-MAPK cascade in hypothalamic neurons of male rat embryos , but the mechanism that initiates these events is poorly understood. This study reports the intracellular Ca increase that participates in the activation of ERK1/2 and axogenesis induced by E2. Hypothalamic neuron cultures were established from 16-day-old male rat embryos and fed with astroglia-conditioned media for 48 h.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
February 2019
GM2-gangliosidosis, a subgroup of lysosomal storage disorders, is caused by deficiency of hexosaminidase activity, and comprises the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents normal metabolization of ganglioside GM2, usually resulting in progressive neurodegenerative disease. The molecular mechanisms whereby GM2 accumulation in neurons triggers neurodegeneration remain unclear.
View Article and Find Full Text PDFIn mammals, the reproductive function is controlled by the hypothalamic–pituitary–gonadal axis. During development, mechanisms mediated by gonadal steroids exert an imprinting at the hypothalamic–pituitary level, by establishing sexual differences in the circuits that control male and female reproduction. In rodents, the testicular production of androgens increases drastically during the fetal/neonatal stage.
View Article and Find Full Text PDFFemale mouse hippocampal and hypothalamic neurons growing in vitro show a faster development of neurites than male mouse neurons. This sex difference in neuritogenesis is determined by higher expression levels of the neuritogenic factor neurogenin 3 in female neurons. Experiments with the four core genotype mouse model, in which XX and XY animals with male gonads and XX and XY animals with female gonads are generated, indicate that higher levels of neurogenin 3 in developing neurons are determined by the presence of the XX chromosome complement.
View Article and Find Full Text PDFDuring development sex differences in aromatase expression in limbic regions of mouse brain depend on sex chromosome factors. Genes on the sex chromosomes may affect the hormonal regulation of aromatase expression and this study was undertaken to explore that possibility. Male E15 anterior amygdala neuronal cultures expressed higher levels of aromatase (mRNA and protein) than female cultures.
View Article and Find Full Text PDFThis review analyzes the signaling mechanisms activated by estradiol to regulate neuritogenesis in several neuronal populations. Estradiol regulates axogenesis by the activation of the mitogen activated protein kinase (MAPK) cascade through estrogen receptor α located in the plasma membrane. In addition, estradiol regulates MAPK signaling via the activation of protein kinase C and by increasing the expression of brain derived neurotrophic factor and tyrosine kinase receptor B.
View Article and Find Full Text PDFThe extracellular signal-regulated kinase (ERK) pathway, which can be activated by NMDA receptor stimulation, is involved in fear conditioning and drug addiction. We have previously shown that withdrawal from chronic ethanol administration facilitated the formation of contextual fear memory. In order to explore the neural substrates and the potential mechanism involved in this effect, we examined: 1) the ERK1/2 activation in the central (CeA) and basolateral (BLA) nuclei of the amygdala and in the dorsal hippocampus (dHip), 2) the effect of the NMDA receptor antagonist MK-801 on fear conditioning and ERK activation and 3) the effect of the infusion of U0126, a MEK inhibitor, into the BLA on fear memory formation in ethanol withdrawn rats.
View Article and Find Full Text PDF