Publications by authors named "Maria Julia Althabegoiti"

The Hyphomicrobiales (Rhizobiales) order contains soil bacteria with an irregular distribution of the Calvin-Benson-Bassham cycle (CBB). Key enzymes in the CBB cycle are ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), whose large and small subunits are encoded in and , and phosphoribulokinase (PRK), encoded by . These genes are often found in operons, regulated by the LysR-type regulator CbbR.

View Article and Find Full Text PDF

Strains LPU83T and Or191 of the genus Rhizobium were isolated from the root nodules of alfalfa, grown in acid soils from Argentina and the USA. These two strains, which shared the same plasmid pattern, lipopolysaccharide profile, insertion-sequence fingerprint, 16S rRNA gene sequence and PCR-fingerprinting pattern, were different from reference strains representing species of the genus Rhizobium with validly published names. On the basis of previously reported data and from new DNA-DNA hybridization results, phenotypic characterization and phylogenetic analyses, strains LPU83T and Or191 can be considered to be representatives of a novel species of the genus Rhizobium, for which the name Rhizobium favelukesii sp.

View Article and Find Full Text PDF

Background: Rhizobium grahamii belongs to a new phylogenetic group of rhizobia together with Rhizobium mesoamericanum and other species. R. grahamii has a broad-host-range that includes Leucaena leucocephala and Phaseolus vulgaris, although it is a poor competitor for P.

View Article and Find Full Text PDF

Flagellar-driven bacterial motility is an important trait for colonization of natural environments. Bradyrhizobium japonicum is a soil species that possesses two different flagellar systems: one subpolar and the other lateral, each with a filament formed by a different set of flagellins. While synthesis of subpolar flagellins is constitutive, translation of lateral flagellins was detected in rhizobia grown with l-arabinose, but not with d-mannitol as sole carbon source, independently of whether bacteria were in liquid or semisolid medium.

View Article and Find Full Text PDF

Bradyrhizobium japonicum has two types of flagella. One has thin filaments consisting of the 33-kDa flagellins FliCI and FliCII (FliCI-II) and the other has thick filaments consisting of the 65-kDa flagellins FliC1, FliC2, FliC3, and FliC4 (FliC1-4). To investigate the roles of each flagellum in competition for nodulation, we obtained mutants deleted in fliCI-II and/or fliC1-4 in the genomic backgrounds of two derivatives from the reference strain USDA 110: the streptomycin-resistant derivative LP 3004 and its more motile derivative LP 3008.

View Article and Find Full Text PDF

The effect of the rhizobium adhesion protein RapA1 on Rhizobium leguminosarum bv. trifolii adsorption to Trifolium pratense (red clover) roots was investigated. We altered RapA1 production by cloning its encoding gene under the plac promoter into the stable vector pHC60.

View Article and Find Full Text PDF

A Bradyrhizobium japonicum USDA 110-derived strain able to produce wider halos in soft-agar medium than its parental strain was obtained by recurrent selection. It was more chemotactic than the wild type towards mannitol and three amino acids. When cultured in minimal medium with mannitol as a single carbon-source, it had one thick subpolar flagellum as the wild type, plus several other flagella that were thinner and sinusoidal.

View Article and Find Full Text PDF