Background: Docosahexaenoic acid (DHA), a key lipid in nervous system homeostasis, is depleted in the spinal cord of sporadic amyotrophic lateral sclerosis (sALS) patients. However, the basis for such loss was unknown.
Methods: DHA synthetic machinery was evaluated in spinal cord samples from ALS patients and controls by immunohistochemistry and western blot.
The implication of lipid peroxidation in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) derive from high abundance of peroxidation-prone polyunsaturated fatty acids in central nervous system and its relatively low antioxidant content. In the present work, we evaluated the effect of dietary changes aimed to modify fatty acid tissular composition in survival, disease onset, protein, and DNA oxidative modifications in the hSODG93A transgenic mice, a model of this motor neuron disease. Both survival and clinical evolution is dependent on dietary fatty acid unsaturation and gender, with high unsaturated diet, leading to loss of the disease-sparing effect of feminine gender.
View Article and Find Full Text PDFEpidemiological data suggest that plant-derived phenolics beneficial effects include an inhibition of LDL oxidation. After applying a screening method based on 2,4-dinitrophenyl hydrazine-protein carbonyl reaction to 21 different plant-derived phenolic acids, we selected the most antioxidant ones. Their effect was assessed in 5 different oxidation systems, as well as in other model proteins.
View Article and Find Full Text PDFBackground: Experimental evidences demonstrate that vegetable derived extracts inhibit cholesterol absorption in the gastrointestinal tract. To further explore the mechanisms behind, we modeled duodenal contents with several vegetable extracts.
Results: By employing a widely used cholesterol quantification method based on a cholesterol oxidase-peroxidase coupled reaction we analyzed the effects on cholesterol partition.
Biochem Biophys Res Commun
October 2009
Oxidation of Amplex Red by hydrogen peroxide in the presence of horseradish peroxidase (HRP) gives rise to an intensely colour product, resorufin. This reaction has been frequently employed for measurements based on enzyme-coupled reactions that detect hydrogen peroxide as a final reaction product. In the current study, we show that the presence of dietary antioxidants at biological concentrations in the reaction medium produced interferences in the Amplex Red/HRP catalyzed reaction that result in an over quantification of the hydrogen peroxide produced.
View Article and Find Full Text PDFNonenzymatic protein modifications are generated from direct oxidation of amino acid side chains and from reaction of the nucleophilic side chains of specific amino acids with reactive carbonyl species. These reactions give rise to specific markers that have been analyzed in different neurodegenerative diseases sharing protein aggregation, such as Alzheimer's disease, Pick's disease, Parkinson's disease, dementia with Lewy bodies, Creutzfeldt-Jakob disease, and amyotrophic lateral sclerosis. Collectively, available data demonstrate that oxidative stress homeostasis, mitochondrial function, and energy metabolism are key factors in determining the disease-specific pattern of protein molecular damage.
View Article and Find Full Text PDFThe occurrence of endoplasmic reticulum (ER) stress in the sporadic form of amyotrophic lateral sclerosis (ALS) is unknown, despite it has been recently documented in experimental models of the familial form. Here we show that spinal cord from patients with sporadic ALS showed signs of ER stress, such as increased levels of ER chaperones such as protein-disulfide isomerase, and increased phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha). Among the potential causes of such ER stress proteasomal impairment was confirmed in the same samples by demonstrating increased ubiquitin immunoreactivity and increased protein lipoxidative (125%), glycoxidative (55%) and direct oxidative damage (62%) over control values, as evidenced by mass-spectrometry and immunological methods.
View Article and Find Full Text PDFDiverse oxidative pathways, such as direct oxidation of amino acids, glycoxidation, and lipoxidation could contribute to Alzheimer disease pathogenesis. A global survey for the amount of structurally characterized probes for these reactions is lacking and could overcome the lack of specificity derived from measurement of 2,4-dinitrophenylhydrazine reactive carbonyls. Consequently we analyzed (i) the presence and concentrations of glutamic and aminoadipic semialdehydes, N(epsilon)-(carboxymethyl)-lysine, N(epsilon)-(carboxyethyl)-lysine, and N(epsilon)-(malondialdehyde)-lysine by means of gas chromatography/mass spectrometry, (ii) the biological response through expression of the receptor for advanced glycation end products, (iii) the fatty acid composition in brain samples from Alzheimer disease patients and age-matched controls, and (iv) the targets of N(epsilon)-(malondialdehyde)-lysine formation in brain cortex by proteomic techniques.
View Article and Find Full Text PDFWhat are the mechanisms determining the rate of animal aging? Of the two major classes of endothermic animals, bird species are strikingly long-lived compared to similar size mammalian counterparts. Since oxidative stress is causally related to the basic aging process, markers of different kinds of oxidative damage to proteins (glutamic semialdehyde, aminoadipic semialdehyde, N(epsilon)-(carboxyethyl)lysine; N(epsilon)-(carboxymethyl)lysine, N(epsilon)-(malondialdehyde)lysine and dinitrophenylhydrazyne-reactive protein carbonyls, peptidase activities of the proteasome, and amino acid and membrane fatty acyl composition were identified and measured in skeletal muscle from the short-lived rat (maximum life span, 4 years) and compared with the long-lived pigeon (maximum life span, 35 years). Skeletal muscle from pigeon showed significantly higher levels of glutamic semialdehyde, protein carbonyls (by western blot), N(epsilon)-(carboxyethyl)lysine and N(epsilon)-(carboxymethyl)lysine.
View Article and Find Full Text PDFBackground: Glucose degradation products (GDP) in dialysis fluids may induce nonenzymatic protein modifications, the chemical nature and biological properties of which should be better defined.
Aims: To characterize nonenzymatic protein modifications present in glucose-based peritoneal dialysis fluids (PDF) and to evaluate the relationship between concentrations of GDP and the derived nonenzymatic modifications, and the potential of PDF for generating these modifications in vitro.
Methods: The presence, distribution, and content of several nonenzymatic protein modifications in PDF were evaluated by immunological methods, by HPLC, and by gas chromatography-mass spectrometry (GC/MS).
Formation of advanced glycation end products (AGEs) is considered a potential link between hyperglycemia and chronic diabetic complications, including disturbances in cell signaling. It was hypothesized that AGEs alter cell signaling by interfering with growth factor receptors. Therefore, we studied the effects of two AGE precursors, glyoxal (GO) and methylglyoxal (MGO), on the epidermal growth factor receptor (EGFR) signaling pathway in cultured cells.
View Article and Find Full Text PDF