Motivation: Understanding the dynamics of gene expression across different cellular states is crucial for discerning the mechanisms underneath cellular differentiation. Genes that exhibit variation in mean expression as a function of Pseudotime and between branching trajectories are expected to govern cell fate decisions. We introduce scMaSigPro, a method for the identification of differential gene expression patterns along Pseudotime and branching paths simultaneously.
View Article and Find Full Text PDFMotivation: Batch effects in omics datasets are usually a source of technical noise that masks the biological signal and hampers data analysis. Batch effect removal has been widely addressed for individual omics technologies. However, multi-omic datasets may combine data obtained in different batches where omics type and batch are often confounded.
View Article and Find Full Text PDFIn this work, we use electrophysiological and metabolomic tools to determine the role of chitosan as plant defense elicitor in soil for preventing or manage root pests and diseases sustainably. Root exudates include a wide variety of molecules that plants and root microbiota use to communicate in the rhizosphere. Tomato plants were treated with chitosan.
View Article and Find Full Text PDFMotivation: As sequencing technologies improve their capacity to detect distinct transcripts of the same gene and to address complex experimental designs such as longitudinal studies, there is a need to develop statistical methods for the analysis of isoform expression changes in time series data.
Results: Iso-maSigPro is a new functionality of the R package maSigPro for transcriptomics time series data analysis. Iso-maSigPro identifies genes with a differential isoform usage across time.
Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N.
View Article and Find Full Text PDFAs the use of RNA-seq has popularized, there is an increasing consciousness of the importance of experimental design, bias removal, accurate quantification and control of false positives for proper data analysis. We introduce the NOISeq R-package for quality control and analysis of count data. We show how the available diagnostic tools can be used to monitor quality issues, make pre-processing decisions and improve analysis.
View Article and Find Full Text PDFBioinformatics
September 2014
Motivation: The widespread adoption of RNA-seq to quantitatively measure gene expression has increased the scope of sequencing experimental designs to include time-course experiments. maSigPro is an R package specifically suited for the analysis of time-course gene expression data, which was developed originally for microarrays and hence was limited in its application to count data.
Results: We have updated maSigPro to support RNA-seq time series analysis by introducing generalized linear models in the algorithm to support the modeling of count data while maintaining the traditional functionalities of the package.
Serial transcriptomics experiments investigate the dynamics of gene expression changes associated with a quantitative variable such as time or dosage. The statistical analysis of these data implies the study of global and gene-specific expression trends, the identification of significant serial changes, the comparison of expression profiles and the assessment of transcriptional changes in terms of cellular processes. We have created the SEA (Serial Expression Analysis) suite to provide a complete web-based resource for the analysis of serial transcriptomics data.
View Article and Find Full Text PDFMotivation: Time-course microarray experiments study the progress of gene expression along time across one or several experimental conditions. Most developed analysis methods focus on the clustering or the differential expression analysis of genes and do not integrate functional information. The assessment of the functional aspects of time-course transcriptomics data requires the use of approaches that exploit the activation dynamics of the functional categories to where genes are annotated.
View Article and Find Full Text PDFFunctional genomics technologies have been widely adopted in the biological research of both model and non-model species. An efficient functional annotation of DNA or protein sequences is a major requirement for the successful application of these approaches as functional information on gene products is often the key to the interpretation of experimental results. Therefore, there is an increasing need for bioinformatics resources which are able to cope with large amount of sequence data, produce valuable annotation results and are easily accessible to laboratories where functional genomics projects are being undertaken.
View Article and Find Full Text PDFMotivation: Designed microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about the transcriptional responses associated with external variables. In these datasets, signals of interest coexist with varying sources of unwanted noise in a framework of (co)relation among the measured variables and with the different levels of the studied factors. Discovering experimentally relevant transcriptional changes require methodologies that take all these elements into account.
View Article and Find Full Text PDFMotivation: Multi-series time-course microarray experiments are useful approaches for exploring biological processes. In this type of experiments, the researcher is frequently interested in studying gene expression changes along time and in evaluating trend differences between the various experimental groups. The large amount of data, multiplicity of experimental conditions and the dynamic nature of the experiments poses great challenges to data analysis.
View Article and Find Full Text PDF