Publications by authors named "Maria Jose Lo Faro"

Article Synopsis
  • Figure 5 illustrates key data findings that highlight significant trends in the research.
  • It presents a comparison of different variables, showing how they interact over time or under various conditions.
  • The visual representation helps to clarify complex results, making it easier for readers to grasp the implications of the study.
View Article and Find Full Text PDF

The search for improved transducers to fabricate better-performing (bio)sensors is a challenging but rewarding endeavor aiming to better diagnose and treat diseases. In this paper, we report on the decoration of a dense vertical array of ultrathin silicon nanowires (Si NWs), produced by metal-assisted chemical etching, with 20 nm gold nanoparticles (Au NPs) for surface-enhanced Raman scattering (SERS) applications. To optimize the production of a uniform 3D SERS active platform, we tested different Si NW surface functionalizations with various alkoxysilanes before Au decoration.

View Article and Find Full Text PDF

The recent SARS-CoV-2 pandemic has highlighted the urgent need for novel point-of-care devices to be promptly used for a rapid and reliable large screening analysis of several biomarkers like genetic sequences and antibodies. Currently, one of the main limitations of rapid tests is the high percentage of false negatives in the presence of variants and, in particular for the Omicron one. We demonstrate in this work the detection of SARS-CoV-2 and the Omicron variant with a cost-effective silicon nanosensor enabling high sensitivity, selectivity, and fast response.

View Article and Find Full Text PDF

In the biomedical field, the demand for the development of broad-spectrum biomaterials able to inhibit bacterial growth is constantly increasing. Chronic infections represent the most serious and devastating complication related to the use of biomaterials. This is particularly relevant in the orthopaedic field, where infections can lead to implant loosening, arthrodesis, amputations and sometimes death.

View Article and Find Full Text PDF

Air quality monitoring is an increasingly debated topic nowadays. The increasing spillage of waste products released into the environment has contributed to the increase in air pollution. Consequently, the production of increasingly performing devices in air monitoring is increasingly in demand.

View Article and Find Full Text PDF

In this paper, we exploit the perspective of luminescent Si nanowires (NWs) in the growing field of commercial biosensing nanodevices for the selective recognition of proteins and pathogen genomes. We fabricated quantum confined fractal arrays of Si NWs with room temperature emission at 700 nm obtained by thin-film, metal-assisted, chemical etching with high production output at low cost. The fascinating optical features arising from multiple scattering and weak localization of light promote the use of Si NWs as optical biosensing platforms with high sensitivity and selectivity.

View Article and Find Full Text PDF

Gold nanoclusters (Au NCs) are attractive luminescent nanoprobes for biomedical applications. In vivo biosensing and bioimaging requires the delivery of the Au NCs into subcellular compartments. In this view, we explore here the possible encapsulation of ultra-small-sized red and blue emitting Au NCs into liposomes of various sizes and chemical compositions.

View Article and Find Full Text PDF

The oocyte microenvironment constituted by the follicular fluid (FF) is a key for the optimal development of female gametes. Its composition reflects the physiological state of the ovarian follicle. The particularity of FF is to contain a huge diversity of extracellular vesicles specific to women, in the same way as seminal plasma in men.

View Article and Find Full Text PDF

Molybdenum disulfide (MoS) has attracted great attention for its unique chemical and physical properties. The applications of this transition metal dichalcogenide (TMDC) range from supercapacitors to dye-sensitized solar cells, Li-ion batteries and catalysis. This work opens new routes toward the use of electrodeposition as an easy, scalable and cost-effective technique to perform the coupling of Si with molybdenum disulfide.

View Article and Find Full Text PDF

Silicon nanowires (NWs) are appealing building blocks for low-cost novel concept devices with improved performances. In this research paper, we realized a hybrid platform combining an array of vertically oriented Si NWs with different types of bucky gels, obtained from carbon nanotubes (CNT) dispersed into an ionic liquid (IL) matrix. Three types of CNT bucky gels were obtained from imidazolium-based ionic liquids (BMIM-I, BIMI-BF, and BMIM-TfN) and semiconductive CNTs, whose structural and optical responses to the hybrid platforms were analyzed and compared.

View Article and Find Full Text PDF

According to their high electron density and ultrasmall size, gold nanoclusters (AuNCs) have unique luminescence and photoelectrochemical properties that make them very attractive for various biomedical fields. These applications require a clear understanding of their interaction with biological membranes. Here we demonstrate the ability of the AuNCs as markers for lipidic bilayer structures such as synthetic liposomes and biological extracellular vesicles (EVs).

View Article and Find Full Text PDF

The continuing accumulation of mutations in the RNA genome of the SARS-CoV-2 virus generates an endless succession of highly contagious variants that cause concern around the world due to their antibody resistance and the failure of current diagnostic techniques to detect them in a timely manner. Raman spectroscopy represents a promising alternative to variants detection and recognition techniques, thanks to its ability to provide a characteristic spectral fingerprint of the biological samples examined under all circumstances. In this work we exploit the surface-enhanced Raman scattering (SERS) properties of a silver dendrite layer to explore, for the first time to our knowledge, the distinctive features of the Omicron variant genome.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder that progressively compromises cognitive functions. Tumor necrosis factor (TNF)-Related Apoptosis Inducing Ligand (TRAIL), a proinflammatory cytokine belonging to the TNF superfamily, appears to be a key player in the inflammatory/immune orchestra of the AD brain. Despite the ability of an anti-TRAIL monoclonal antibody to reach the brain producing beneficial effects in AD mice, we attempted to develop such a TRAIL-neutralizing monoclonal antibody adsorbed on lipid and polymeric nanocarriers, for intranasal administration, in a valid approach to overcome issues related to both high dose and drug transport across the blood-brain barrier.

View Article and Find Full Text PDF

In this work, the optimal conditions for the electrodeposition of a CdSe film on n-Si were demonstrated. The structural and optical properties of the bare films and after annealing were studied. In particular, the crystallinity and photoluminescence of the samples were evaluated, and after annealing at 400 °C under a nitrogen atmosphere, a PL increase by almost an order of magnitude was observed.

View Article and Find Full Text PDF

Nanostructures are arising as novel biosensing platforms promising to surpass current performance in terms of sensitivity, selectivity, and affordability of standard approaches. However, for several nanosensors, the material and synthesis used make the industrial transfer of such technologies complex. Silicon nanowires (NWs) are compatible with Si-based flat architecture fabrication and arise as a hopeful solution to couple their interesting physical properties and surface-to-volume ratio to an easy commercial transfer.

View Article and Find Full Text PDF

Extracellular Vesicles (EVs) are membrane-limited particles containing proteins, lipids, metabolites and nucleic acids that are secreted by healthy and cancerous cells. These vesicles are very heterogeneous in size and content and mediate a variety of biological functions. Three subtypes of EV have been described in the male genital tract: microvesicles, myelinosomes and exosomes.

View Article and Find Full Text PDF

Introduction: Small extracellular vesicles (sEVs), thanks to their cargo, are involved in cellular communication and play important roles in cell proliferation, growth, differentiation, apoptosis, stemness and embryo development. Their contribution to human pathology has been widely demonstrated and they are emerging as strategic biomarkers of cancer, neurodegenerative and cardiovascular diseases, and as potential targets for therapeutic intervention. However, the use of sEVs for medical applications is still limited due to the selectivity and sensitivity limits of the commonly applied approaches.

View Article and Find Full Text PDF

Silicon nanowires (Si NWs) emerged in several application fields as a strategic element to surpass the bulk limits with a flat compatible architecture. The approaches used for the Si NW realization have a crucial impact on their final performances and their final cost. This makes the research on a novel and flexible approach for Si NW fabrication a crucial point for Si NW-based devices.

View Article and Find Full Text PDF

The ever-stronger attention paid to enhancing safety in the workplace has led to novel sensor development and improvement. Despite the technological progress, nanostructured sensors are not being commercially transferred due to expensive and non-microelectronic compatible materials and processing approaches. In this paper, the realization of a cost-effective sensor based on ultrathin silicon nanowires (Si NWs) for the detection of nitrogen dioxide (NO) is reported.

View Article and Find Full Text PDF

Biosensors are revolutionizing the health-care systems worldwide, permitting to survey several diseases, even at their early stage, by using different biomolecules such as proteins, DNA, and other biomarkers. However, these sensing approaches are still scarcely diffused outside the specialized medical and research facilities. Silicon is the undiscussed leader of the whole microelectronics industry, and novel sensors based on this material may completely change the health-care scenario.

View Article and Find Full Text PDF

Silicon is the undisputed leader for microelectronics among all the industrial materials and Si nanostructures flourish as natural candidates for tomorrow's technologies due to the rising of novel physical properties at the nanoscale. In particular, silicon nanowires (Si NWs) are emerging as a promising resource in different fields such as electronics, photovoltaic, photonics, and sensing. Despite the plethora of techniques available for the synthesis of Si NWs, metal-assisted chemical etching (MACE) is today a cutting-edge technology for cost-effective Si nanomaterial fabrication already adopted in several research labs.

View Article and Find Full Text PDF

Disordered materials with new optical properties are capturing the interest of the scientific community due to the observation of innovative phenomena. We present the realization of novel optical materials obtained by fractal arrays of silicon nanowires (NWs) synthesized at low cost, without mask or lithography processes and decorated with Er:YO, one of the most promising material for the integration of erbium in photonics. The investigated structural properties of the fractal Er:YO/NWs demonstrate that the fractal morphology can be tuned as a function of the sputtering deposition angle (from 5° to 15°) of the Er:YO layer.

View Article and Find Full Text PDF

Silicon nanowires (Si NWs) are emerging as an innovative building block in several fields, such as microelectronics, energetics, photonics, and sensing. The interest in Si NWs is related to the high surface to volume ratio and the simpler coupling with the industrial flat architecture. In particular, Si NWs emerge as a very promising material to couple the light to silicon.

View Article and Find Full Text PDF

In this paper, we report on the realization of a highly sensitive and low cost 3D surface-enhanced Raman scattering (SERS) platform. The structural features of the Ag dendrite network that characterize the SERS material were exploited, attesting a remarked self-similarity and scale invariance over a broad range of length scales that are typical of fractal systems. Additional structural and optical investigations confirmed the purity of the metal network, which was characterized by low oxygen contamination and by broad optical resonances introduced by the fractal behavior.

View Article and Find Full Text PDF

CdSe electrodeposition on n-Si (100) substrate was investigated in sulfuric acid solution. The behaviour and the deposition of the precursors (Cd and Se) were studied separately at first. Then, we explored both the alternated deposition, one layer by one, as well as the simultaneous co-deposition of the two elements to form the CdSe semiconductor.

View Article and Find Full Text PDF