Leaf rust is one of the most significant diseases of wheat worldwide. In Argentina, it is one of the main reasons for variety replacement that becomes susceptible after large-scale use. Some varieties showed durable resistance to this disease, including Buck Manantial and Sinvalocho MA.
View Article and Find Full Text PDFA complementary gene to LrSV2 for specific adult plant leaf rust resistance in wheat was mapped on chromosome 4BL, tightly linked to Lr12 / 31. LrSV2 is a race-specific adult plant leaf rust (Puccinia triticina) resistance gene on subdistal chromosome 3BS detected in the cross of the traditional Argentinean wheat (Triticum aestivum) variety Sinvalocho MA and the experimental line Gama6. The analysis of the cross of R46 [recombinant inbred line (RIL) derived from Sinvalocho MA carrying LrSV2 gene and the complementary gene Lrc-SV2 identified in the current paper] and the commercial variety Relmo Siriri (not carrying neither of these two genes) allowed the detection of the unlinked complementary gene Lrc-SV2 because the presence of one dominant allele of both is necessary to express the LrSV2-specific adult plant resistance.
View Article and Find Full Text PDFRust fungi are one of the most devastating pathogens of crop plants. The biotrophic fungus Puccinia sorghi Schwein (Ps) is responsible for maize common rust, an endemic disease of maize (Zea mays L.) in Argentina that causes significant yield losses in corn production.
View Article and Find Full Text PDFBackground: The production of antimicrobial peptides is a common defense strategy of living cells against a wide range of pathogens. Plant snakin peptides inhibit bacterial and fungal growth at extremely low concentrations. However, little is known of their molecular and ecological characteristics, including origin, evolutionary equivalence, specific functions and activity against beneficial microbes.
View Article and Find Full Text PDF