Publications by authors named "Maria Jose Caloca"

Hereditary breast and/or ovarian cancer is a highly heterogeneous disease with more than 10 known disease-associated genes. In the framework of the BRIDGES project (Breast Cancer Risk after Diagnostic Gene Sequencing), the gene has been sequenced in 60,466 breast cancer patients and 53,461 controls. We aimed at functionally characterizing all the identified genetic variants that are predicted to disrupt the splicing process.

View Article and Find Full Text PDF

A relevant fraction of variants is associated with splicing alterations and with an increased risk of hereditary breast and ovarian cancer (HBOC). In this work, we have carried out a thorough study of variants from BRCA2 exons 14 and 15 reported at mutation databases. A total of 294 variants from exons 14 and 15 and flanking intronic sequences were analyzed with the online splicing tools NNSplice and Human Splicing Finder.

View Article and Find Full Text PDF

Chimaerins are GTPase-activating proteins that inactivate the GTP-hydrolase Rac1 in a diacylglycerol-dependent manner. To date, the study of chimaerins has been done mostly in neuronal cells. Here, we show that alpha2- and beta2-chimaerin are expressed at different levels in T-cells and that they participate in T-cell receptor signaling.

View Article and Find Full Text PDF

The regulation and function of beta2-chimaerin, a novel receptor for the phorbol ester tumour promoters and the second messenger DAG (diacylglycerol), is largely unknown. As with PKC (protein kinase C) isoenzymes, phorbol esters bind to beta2-chimaerin with high affinity and promote its subcellular distribution. beta2-Chimaerin has GAP (GTPase-activating protein) activity for the small GTP-binding protein Rac1, but for not Cdc42 or RhoA.

View Article and Find Full Text PDF

Anthracycline antibiotics like doxorubicin (DOX) are known to exert their antitumor effects primarily via DNA intercalation and topoisomerase II inhibition. By contrast, the noncross-resistant cytoplasmically localizing DOX analogue, N-benzyladriamycin-14-valerate (AD 198), only weakly binds DNA and does not inhibit topoisomerase II, yet it displays superior antitumor activity, strongly suggesting a distinct cytotoxic mechanism. In recent modeling studies, we reported a structural similarity between AD 198 and commonly accepted ligands for the C1-domain of protein kinase C (PKC), and we hypothesized that the unique biological activity of AD 198 may derive, in part, through this kinase.

View Article and Find Full Text PDF