Publications by authors named "Maria Jesus Delgado"

The aim of this work is the full characterization of all the nocturnin () paralogues expressed in a teleost, the goldfish. An in silico analysis of the evolutive origin of in Osteichthyes is performed, including the splicing variants and new paralogues appearing after teleostean 3R genomic duplication and the cyprinine 4Rc. After sequencing the full-length mRNA of goldfish, we obtained two isoforms for ( and ) with two splice variants (I and II), and only one for () with two transcripts (II and III).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the connection between SARS-CoV-2 viral load (viremia) and genetic variations (SNPs) linked to the severity of COVID-19 in a group of hospitalized patients at University Hospital La Princesa.
  • Out of 340 patients analyzed, only 37.1% had positive viremia, with specific SNPs (like rs2071746 and rs78958998) associated with a higher risk of viremia, while others (like rs11052877 and rs33980500) were linked to a lower risk.
  • The findings suggest that certain genetic variants contribute to differences in SARS-CoV-2 viremia among individuals, highlighting the
View Article and Find Full Text PDF

Chronodisruption caused by factors such as light at night and mistimed meals has been linked to numerous physiological alterations in vertebrates and may be an anxiogenic factor affecting welfare. This study aims to investigate whether chronodisruption causes measurable changes in the anxiety responses of goldfish under two conditions: randomly scheduled feeding (RF) and continuous light (LL). Anxiety-like behavior was assessed in the open field with object approach and black/white preference tests, which had been validated using diazepam.

View Article and Find Full Text PDF

The REV-ERBα nuclear receptor is a key component of the molecular machinery of circadian oscillators in mammals. While the rhythmic expression of this receptor has been described in teleosts, several critical aspects of its regulation remain unknown, such as which synchronizers entrain its rhythm, and whether it can modulate the expression of other clock genes. The objective of this study was to gain deeper understanding of the role of REV-ERBα in the fish circadian system.

View Article and Find Full Text PDF

The relevance of the insulin-like growth factor-1 (IGF-1) system in several physiological processes is well-known in vertebrates, although little information about their temporal organization is available. This work aims to investigate the possible rhythmicity of the different components of the IGF-1 system (, the and receptors and the paralogs of its binding proteins IGFBP1 and IGFBP2) in the liver of goldfish. In addition, we also study the influence of two environmental cues, the light/dark cycle and feeding time, as .

View Article and Find Full Text PDF

REV-ERBα ( 1) is a transcriptional repressor that in mammals regulates nutrient metabolism, and has effects on energy homeostasis, although its role in teleosts is poorly understood. To determine REV-ERBα's involvement in fish energy balance and metabolism, we studied the effects of acute and 7-day administration of its agonist SR9009 on food intake, weight and length gain, locomotor activity, feeding regulators, plasma and hepatic metabolites, and liver enzymatic activity. SR9009 inhibited feeding, lowering body weight and length gain.

View Article and Find Full Text PDF

Fish are ectotherm, which rely on the external temperature to regulate their internal body temperature, although some may perform partial endothermy. Together with photoperiod, temperature oscillations, contribute to synchronizing the daily and seasonal variations of fish metabolism, physiology and behavior. Recent studies are shedding light on the mechanisms of temperature sensing and behavioral thermoregulation in fish.

View Article and Find Full Text PDF

In fish, most hormonal productions of the pituitary gland display daily and/or seasonal rhythmic patterns under control by upstream regulators, including internal biological clocks. The pineal hormone melatonin, one main output of the clocks, acts at different levels of the neuroendocrine axis. Melatonin rhythmic production is synchronized mainly by photoperiod and temperature.

View Article and Find Full Text PDF

Increasing economic integration and global synchronization can be key for countries aiming to catch up in GDP per capita terms. Little attention has hitherto been placed in synchronization as determinant of convergence. In this paper we estimate the effect of economic globalization and synchronization on income convergence for a sample of 89 developed and developing countries in the period 1970-2015.

View Article and Find Full Text PDF

Vertebrates possess circadian clocks, driven by transcriptional-translational loops of clock genes, to orchestrate anticipatory physiological adaptations to cyclic environmental changes. This work aims to investigate how the absence of a light-dark cycle and a feeding schedule impacts the oscillators in the hypothalamus-pituitary-interrenal axis of goldfish. Fish were maintained under 12L:12D feeding at ZT 2; 12L:12D feeding at random times; and constant darkness feeding at ZT 2.

View Article and Find Full Text PDF

Ghrelin (GRL) is a gut-brain hormone with a role in a wide variety of physiological functions in mammals and fish, which points out the ghrelinergic system as a key element for the appropriate biological functioning of the organism. However, many aspects of the multifunctional nature of GRL remain to be better explored, especially in fish. In this study, we used the CRISPR/Cas9 genome editing technique to generate F0 zebrafish in which the expression of grl is compromised.

View Article and Find Full Text PDF

Evidence indicates that central regulation of food intake is well conserved along the vertebrate lineage, at least between teleost fish and mammals. However, several differences arise in the comparison between both groups. In this review, we describe similarities and differences between teleost fish and mammals on an evolutionary perspective.

View Article and Find Full Text PDF

Ghrelin is an important gut-derived hormone with an appetite stimulatory role, while most of the intestinal hormones, including cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), are appetite-inhibitors. Whether these important peptides with opposing roles on food intake interact to regulate energy balance in fish is currently unknown. The aim of this study was to characterize the putative crosstalk between ghrelin and CCK, PYY and GLP-1 in goldfish (Carassius auratus).

View Article and Find Full Text PDF

Glucose homeostasis is an important biological process that involves a variety of regulatory mechanisms. This study aimed to determine whether ghrelin, a multifunctional gut-brain hormone, modulates intestinal glucose transport in goldfish (Carassius auratus). Three intestinal glucose transporters, the facilitative glucose transporter 2 (GLUT2), and the sodium/glucose co-transporters 1 (SGLT1) and 2 (SGLT2), were studied.

View Article and Find Full Text PDF

Ghrelin is the only known hormone posttranslationally modified with an acylation. This modification is crucial for most of ghrelin's physiological effects and is catalyzed by the polytopic enzyme ghrelin O-acyltransferase (GOAT). The aim of this study was to characterize GOAT in a teleost model, goldfish (Carassius auratus).

View Article and Find Full Text PDF

Ghrelin, a multifunctional gut-brain hormone, is involved in the regulation of gastric functions in mammals. This study aimed to determine whether ghrelin modulates digestive enzymes in goldfish (Carassius auratus). Immunofluorescence microscopy found colocalization of ghrelin, GHS-R1a and the digestive enzymes sucrase-isomaltase, aminopeptidase A, trypsin and lipoprotein lipase in intestinal and hepatopancreatic cells.

View Article and Find Full Text PDF

Photoperiod plays an essential role in the synchronization of metabolism, physiology, and behavior to the cyclic variations of the environment. In vertebrates, information is relayed by the pineal cells and translated into the nocturnal production of melatonin. The duration of this signal corresponds to the duration of the night.

View Article and Find Full Text PDF

Leptin is a hormone involved in feeding and body weight regulation in vertebrates, but the relationship between energy status and leptin has not been clearly established in fish. The aim of this study was to investigate in a teleost, the goldfish (Carassius auratus), the tissue expression pattern of two leptins (gLep-aI and gLep-aII) and leptin receptor (gLepR); and the effect of feeding on expression of these genes. Leptin system expression in goldfish was firstly analyzed in fish under overfeeding (2 weeks) or fasting (1 week), and secondly, at different postfeeding times (0, 3, 6, 9 and 12h).

View Article and Find Full Text PDF

Melatonin is a key neuroendocrine transducer in the circadian organization of vertebrates. However, its role in gastrointestinal physiology has not been explored in depth. In goldfish, a role for melatonin as a modulator of intestinal motility has been reported, whereby it attenuates the cholinergic contraction.

View Article and Find Full Text PDF

It has been suggested that melatonin is synthesized in nonphotosensitive organs of vertebrates in addition to the well-known sites of the pineal gland and retina. However, very few studies have demonstrated the gene expression of melatonin-synthesizing enzymes in extrapineal and extraretinal locations. This study focuses on the circadian expression of the two key enzymes of the melatoninergic pathway, arylalkylamine N-acetyltransferase (AANAT) and hydroxyindole-O-methyltransferase (HIOMT), in central and peripheral locations of a teleost fish, the goldfish (Carassius auratus).

View Article and Find Full Text PDF

The present study focused on the effects of a subchronic melatonin treatment on locomotor activity and cortisol plasma levels in goldfish. We compared two different administration routes: peripheral (10 microg/g body weight) versus central (1 microg/microl) injections of melatonin for 7 or 4 days, respectively. Daily locomotor activity, including both diurnal and nocturnal activities, food anticipatory activity and circulating cortisol at 11:00 (under 24 h of food deprivation and 17 h postinjection) were significantly reduced after repeated intraperitoneal injections with melatonin for 7 days, but not after intracerebroventricular treatment.

View Article and Find Full Text PDF

The present study investigates the possible direct actions of melatonin (N-acetyl-5-methoxytryptamine) on intestinal motility in goldfish (Carassius auratus) using an in vitro system of isolated intestine in an organ bath engaged to an isometric transducer. The longitudinal strips from goldfish intestine in the organ bath showed a resting spontaneous myogenic rhythmic activity which is not altered by melatonin. The addition of acetylcholine (1 nmol l(-1)-10 mmol l(-1)) to the organ bath induces a significant contraction of the intestinal strips in a concentration-dependent manner.

View Article and Find Full Text PDF

We localized melatonin binding sites in different brain regions (optic tectum, telencephalon, cerebellum, hypothalamus, olfactory bulbs, and medulla oblongata) of Senegal sole, a species of aquaculture interest, and checked day/night changes in density (B(max)) at mid-light (ZT06) and mid-dark (ZT18). Plasma melatonin was measured using a radioimmunoassay, while binding assays were performed using 2-[(125)I]iodomelatonin as a radioligand. Plasma melatonin concentrations were significantly lower at mid-light (189.

View Article and Find Full Text PDF