One of the most biologically relevant functions of astrocytes within the CNS is the regulation of synaptic transmission, i.e., the physiological basis for information transmission between neurons.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a complex and multifactorial neurodegenerative disorder characterized by cognitive decline, memory loss, behavioral changes, and other neurological symptoms. Considering the urgent need for new AD therapeutics, in the present study we designed, synthesized, and evaluated multitarget compounds structurally inspired by sulfonylureas and pitolisant with the aim of obtaining multitarget ligands for AD treatment. Due to the diversity of chemical scaffolds, a novel strategy has been adopted by merging into one structure moieties displaying HR antagonism and acetylcholinesterase inhibition.
View Article and Find Full Text PDFThe cell cycle consists of successive events that lead to the generation of new cells. The cell cycle is regulated by different cyclins, cyclin-dependent kinases (CDKs) and their inhibitors, such as p27. At the nuclear level, p27 has the ability to control the evolution of different phases of the cell cycle and oppose cell cycle progression by binding to CDKs.
View Article and Find Full Text PDFThe brain depends on glucose as a source of energy. This implies the presence of glucose transporters, being GLUT1 and GLUT3 the most relevant. Expression of GLUT12 is found in mouse and human brain at low levels.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) plays pivotal roles in neuronal function. The cleaved - mature - form of BDNF (mBDNF), predominantly expressed in adult brains, critically determines its effects. However, insufficient proteolytic processing under pathology may lead to the precursor form of BDNF (proBDNF) and thereby increased neuronal apoptosis and synaptic weakening.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized phenotypically by memory impairment, histologically by accumulation of pTau and β-amyloid peptide and morphologically by a loss of nerve terminals in cortical and hippocampal regions. As glutamate is the principle excitatory neurotransmitter of the central nervous system (CNS), the glutamatergic system may play an important role in AD. To date, not many studies have addressed the deleterious effects of Aβ on glutamatergic terminals; therefore the aim of this study was to investigate how Aβ affects glutamatergic terminals and to assess the extent to which alterations in the glutamatergic neurotransmission could impact susceptibility to the illness.
View Article and Find Full Text PDFIn the present work, the involvement of JNK in insulin signaling alterations and its role in glutamatergic deficits in Alzheimer's disease (AD) has been studied. In postmortem cortical tissues, pJNK levels were increased, while insulin signaling and the expression of VGLUT1 were decreased. A significant correlation was found between reduced expression of insulin receptor and VGLUT1.
View Article and Find Full Text PDFThe concept of central insulin resistance and dysfunctional insulin signalling in sporadic Alzheimer's disease (AD) is now widely accepted and diabetes is recognized as one of the main risk factors for developing AD. Moreover, some lines of evidence indicated that VGlut1 is impaired in frontal regions of AD patients and this impairment is correlated with the progression of cognitive decline in AD. The present work hypothesizes that ketosis associated to insulin resistance could interfere with the normal activity of VGlut1 and its role in the release of glutamate in the hippocampus, which might ultimately lead to cognitive deficits.
View Article and Find Full Text PDFDuring the past 20 years, the 5-HT6 receptor has received increasing attention and become a promising target for improving cognition. Several studies with structurally different compounds have shown that not only antagonists but also 5-HT6 receptor agonists improve learning and memory in animal models. A large number of publications describing the development of ligands for this receptor have come to light, and it is now quite evident that 5-HT6 receptors have great pharmaceutical potential in terms of related patents.
View Article and Find Full Text PDFStress has been described as a risk factor for the development of Alzheimer´s disease (AD). In the present work we aim to study the validity of an experimental model of neonatal chronic stress in order to recapitulate the main hallmarks of AD. Male Wistar rats that were separated daily from the dam during the first 3 weeks of life (maternal separation, MS) showed in adulthood cognitive deficits novel object recognition test.
View Article and Find Full Text PDFData from both human and animal studies suggest that exposure to stressful life events at neonatal stages may increase the risk of psychopathology at adulthood. In particular, early maternal deprivation, 24 h at postnatal day (pnd) 9, has been associated with persistent neurobehavioural changes similar to those present in developmental psychopathologies such as depression and schizophrenic-related disorders. Most neuropsychiatric disorders first appear during adolescence, however, the effects of MD on adolescent animals' brain and behaviour have been scarcely explored.
View Article and Find Full Text PDFAgeing is associated with a deterioration of cognitive performance and with increased risk of neurodegenerative disorders. Hypertension is the most-prevalent modifiable risk factor for cardiovascular morbidity and mortality worldwide, and clinical data suggest that hypertension is a risk factor for Alzheimer's disease (AD). In the present study we tested whether propranolol, a β-receptor antagonist commonly used as antihypertensive drug, could ameliorate the cognitive impairments and increases in AD-related markers shown by the senescence-accelerated mouse prone-8 (SAMP8).
View Article and Find Full Text PDFThe objective of the present work was to study the effects of an early-life stress (maternal separation, MS) in the excitatory/inhibitory ratio as a potential factor contributing to the ageing process, and the purported normalizing effects of chronic treatment with the antidepressant venlafaxine. MS induced depressive-like behaviour in the Porsolt forced swimming test that was reversed by venlafaxine, and that persisted until senescence. Aged MS rats showed a downregulation of vesicular glutamate transporter 1 and 2 (VGlut1 and VGlut2) and GABA transporter (VGAT) and increased expression of excitatory amino acid transporter 2 (EAAT2) in the hippocampus.
View Article and Find Full Text PDFSince its discovery in 1993 and subsequent development of selective antagonists, a growing number of studies support the use of serotonin 5-HT(6) receptor antagonism as a promising mechanism for treating cognitive dysfunction. Lately, several studies with structurally different compounds have shown that not only antagonists, but also 5-HT(6) receptor agonists improve learning and memory in animal models. There is even an antagonist, SB-742457, that has completed phase II trials for the treatment of Alzheimer's disease.
View Article and Find Full Text PDFDepression has been linked to failure in synaptic plasticity originating from environmental and/or genetic risk factors. The chronic mild stress model regulates the expression of synaptic markers of neurotransmitter function and associated depressive-like behaviour. Moreover, mice heterozygous for the synaptic vesicle protein vesicular glutamate transporter 1 (VGLUT1), have been proposed as a genetic model of deficient glutamate function linked to depressive-like behaviour.
View Article and Find Full Text PDFNeurotransmitter system dysfunction and synapse loss have been recognized as hallmarks of Alzheimer's disease (AD). Our hypothesis is that specific neurochemical populations of neurons might be more vulnerable to degeneration in AD due to particular deficits in synaptic plasticity. We have studied, in postmortem brain tissue, the relationship between levels of synaptic markers (NCAM and BDNF), neurochemical measurements (cholinacetyltransferase activity, serotonin, dopamine, GABA, and glutamate levels), and clinical data (cognitive status measured as MMSE score).
View Article and Find Full Text PDFThe cholinergic system has been widely implicated in cognitive processes and cholinergic loss is a classical hallmark in Alzheimer disease. Increasing evidence supports a role of the serotonergic system in cognition, possibly through a modulation of cholinergic activity. We compared selective cholinergic denervation by administration of the immunotoxin 192 IgG-saporin in the nucleus basalis of Meynert (NBM) with intracerebroventricular (ICV) lesions of the basal forebrain in male rats 7 days after lesioning.
View Article and Find Full Text PDFCognitive deficits in neuropsychiatric disorders, such as Alzheimer's disease (AD), have been closely related to cholinergic deficits. We have compared different markers of cholinergic function to assess the best biomarker of cognitive deficits associated to cholinergic hypoactivity. In post-mortem frontal cortex from AD patients, acetylcholine (ACh) levels, cholinacetyltransferase (ChAT) and acetylcholinesterase (AChE) activity were all reduced compared to controls.
View Article and Find Full Text PDFACh release from the rat frontal cortex was increased by both local, 0.1-1 microM, and systemic, 0.1-10 microg/kg, administration of the 5-HT(3) receptor antagonist ondansetron, reaching a maximum peak of 143% over basal values.
View Article and Find Full Text PDF