Publications by authors named "Maria J Salar-Garcia"

The energy crisis and climate change are two of the most concerning issues for human beings nowadays. For that reason, the scientific community is focused on the search for alternative biofuels to conventional fossil fuels as well as the development of sustainable processes to develop a circular economy. Bioelectrochemical processes have been demonstrated to be useful for producing bioenergy and value-added products from several types of waste.

View Article and Find Full Text PDF

Bacteria are the driving force of the microbial fuel cell (MFC) technology, which benefits from their natural ability to degrade organic matter and generate electricity. The development of an efficient anodic biofilm has a significant impact on the power performance of this technology so it is essential to understand the effects of the inoculum nature on the anodic bacterial diversity and establish its relationship with the power performance of the system. Thus, this work aims at analysing the impact of 3 different types of inoculum: (i) stored urine, (ii) sludge and (iii) effluent from a working MFC, on the microbial community of the anodic biofilm and therefore on the power performance of urine-fed ceramic MFCs.

View Article and Find Full Text PDF

The Microbial fuel cell (MFC) technology harnesses the potential of some naturally occurring bacteria for electricity generation. Digested sludge is commonly used as the inoculum to initiate the process. There are, however, health hazards and practical issues associated with the use of digested sludge depending on its origin as well as the location for system deployment.

View Article and Find Full Text PDF
Article Synopsis
  • Microbial fuel cells (MFCs) have gained attention for their dual ability to generate clean energy and treat waste, but the use of expensive catalysts limits their widespread use.
  • A novel iron-based catalyst (Fe-STR) was developed and tested, showing superior kinetics for the oxygen reduction reaction compared to other catalysts when integrated into MFCs fed with human urine.
  • After three months of operation, Fe-STR-based cathodes demonstrated a stable power output of 104.5 μW/cm², significantly outperforming traditional activated carbon (AC) cathodes.
View Article and Find Full Text PDF

Background: The halophilic bacterium Chromohalobacter salexigens has been proposed as promising cell factory for the production of the compatible solutes ectoine and hydroxyectoine. This bacterium has evolved metabolic adaptations to efficiently grow under high salt concentrations by accumulating ectoines as compatible solutes. However, metabolic overflow, which is a major drawback for the efficient conversion of biological feedstocks, occurs as a result of metabolic unbalances during growth and ectoines production.

View Article and Find Full Text PDF