Publications by authors named "Maria J Ruiz-Hidalgo"

Article Synopsis
  • * In experiments, dinaciclib increased the sensitivity of certain cancer cell lines to radiation but did not significantly affect apoptosis levels or alter certain cellular signaling pathways, suggesting a complex interaction between the drug and radiation.
  • * The study highlights how dinaciclib's inhibition of CDK12 leads to reduced BRCA1 levels, which affects DNA repair mechanisms and may contribute to cancer cell aging, proposing a potential personalized treatment approach based on the genetic characteristics of different tumors.
View Article and Find Full Text PDF
Article Synopsis
  • Over the past 30 years, research on how cells respond to ionizing radiation (IR) has significantly expanded, particularly focusing on the p38 MAPK signaling pathway.
  • p38 MAPK is activated by IR and is involved in crucial cellular processes like cell cycle regulation, apoptosis, and senescence, but its exact role in determining radioresistance or sensitivity remains unclear.
  • This review aims to summarize what we know about the p38 MAPK family in the context of IR, including their involvement in REDOX control, fibrosis, and the potential to enhance radiotherapy effects through specific compounds.
View Article and Find Full Text PDF
Article Synopsis
  • Sarcomas are a type of tumor, and scientists are trying to understand how a protein called ERK5 affects them by using a mouse model.
  • They found that this ERK5 protein increases in certain muscle-related sarcomas, both in mice and in humans.
  • When they reduced the amount of ERK5 in lab-grown cells, the tumors grew less, which suggests that targeting ERK5 might help treat these cancers better in people.
View Article and Find Full Text PDF

Sorafenib is a multikinase inhibitor widely used in cancer therapy with an antitumour effect related to biological processes as proliferation, migration or invasion, among others. Initially designed as a Raf inhibitor, Sorafenib was later shown to also block key molecules in tumour progression such as VEGFR and PDGFR. In addition, sorafenib has been connected with key signalling pathways in cancer such as EGFR/EGF.

View Article and Find Full Text PDF

The p38 mitogen-activated protein kinase (MAPK) signaling pathway is implicated in cancer biology and has been widely studied over the past two decades as a potential therapeutic target. Most of the biological and pathological implications of p38MAPK signaling are often associated with p38α (MAPK14). Recently, several members of the p38 family, including p38γ and p38δ, have been shown to play a crucial role in several pathologies including cancer.

View Article and Find Full Text PDF

Objectives: To fully clarify the role of Mitogen Activated Protein Kinase in the therapeutic response to Sorafenib in Renal Cell Carcinoma as well as the cell death mechanism associated to this kinase inhibitor, we have evaluated the implication of several Mitogen Activated Protein Kinases in Renal Cell Carcinoma-derived cell lines.

Materials And Methods: An experimental model of Renal Cell Carcinoma-derived cell lines (ACHN and 786-O cells) was evaluated in terms of viability by MTT assay, induction of apoptosis by caspase 3/7 activity, autophagy induction by LC3 lipidation, and p62 degradation and kinase activity using phospho-targeted antibodies. Knock down of ATG5 and ERK5 was performed using lentiviral vector coding specific shRNA.

View Article and Find Full Text PDF

The E1a gene from adenovirus has become a major tool in cancer research. Since the discovery of E1a, it has been proposed to be an oncogene, becoming a key element in the model of cooperation between oncogenes. However, E1a's in vivo behaviour is consistent with a tumour suppressor gene, due to the block/delay observed in different xenograft models.

View Article and Find Full Text PDF

The involvement of NOTCH signaling in macrophage activation by Toll receptors has been clearly established, but the factors and pathways controlling NOTCH signaling during this process have not been completely delineated yet. We have characterized the role of TSPAN33, a tetraspanin implicated in a disintegrin and metalloproteinase (ADAM) 10 maturation, during macrophage proinflammatory activation. Tspan33 expression increases in response to TLR signaling, including responses triggered by TLR4, TLR3, and TLR2 activation, and it is enhanced by IFN-γ.

View Article and Find Full Text PDF

Delta-like protein 1 (DLK1) is a noncanonical ligand that inhibits NOTCH1 receptor activity and regulates multiple differentiation processes. In macrophages, NOTCH signaling increases TLR-induced expression of key pro-inflammatory mediators. We have investigated the role of DLK1 in macrophage activation and inflammation using Dlk1-deficient mice and Raw 264.

View Article and Find Full Text PDF

Resistance to cisplatin is a major challenge in the current cancer therapy. In order to explore new therapeutic strategies to cisplatin resistance, we evaluated, in a model of lung cancer (H1299 and H460 cell lines), the nature of the pathways leading to cell death. We observed that H1299 displayed a natural resistance to cisplatin due to an inability to trigger an apoptotic response that correlates with the induction of autophagy.

View Article and Find Full Text PDF

Aims: The epidermal growth factor-like protein Delta-like 1 (DLK1) regulates multiple differentiation processes. It resembles NOTCH ligands structurally and is considered a non-canonical ligand. Given the crucial role of the NOTCH pathway in angiogenesis, we hypothesized that DLK1 could regulate angiogenesis by interfering with NOTCH.

View Article and Find Full Text PDF

The protein DLK2, highly homologous to DLK1, belongs to the EGF-like family of membrane proteins, which includes NOTCH receptors and their DSL-ligands. The molecular mechanisms by which DLK proteins regulate cell differentiation and proliferation processes are not fully established yet. In previous reports, we demonstrated that DLK1 interacts with itself and with specific EGF-like repeats of the NOTCH1 extracellular region involved in the binding to NOTCH1 canonical ligands.

View Article and Find Full Text PDF

Macrophages present different Notch receptors and ligands on their surface. Following macrophage activation by LPS or other TLR ligands, Notch1 expression is upregulated. We report here that Notch signaling increases both basal and LPS-induced NF-kappaB activation, favoring the expression of genes implicated in the inflammatory response, such as the cytokines TNF-alpha and IL-6, or enzymes, such as iNOS.

View Article and Find Full Text PDF

Notch signaling has been extensively implicated in cell-fate determination along the development of the immune system. However, a role for Notch signaling in fully differentiated immune cells has not been clearly defined. We have analyzed the expression of Notch protein family members during macrophage activation.

View Article and Find Full Text PDF

The protein dlk, encoded by the Dlk1 gene, belongs to the Notch epidermal growth factor (EGF)-like family of receptors and ligands, which participate in cell fate decisions during development. The molecular mechanisms by which dlk regulates cell differentiation remain unknown. By using the yeast two-hybrid system, we found that dlk interacts with Notch1 in a specific manner.

View Article and Find Full Text PDF

The EGF-like membrane protein dlk plays a crucial role in the control of cell differentiation. Overexpression of the protein prevents, whereas inhibition of its expression increases, adipocyte differentiation of 3T3-L1 cells in response to Insulin-like Growth Factor I (IGF-1) or insulin. We have investigated whether dlk modulates the signaling pathways known to control this process.

View Article and Find Full Text PDF

Levels of dlk, an EGF-like homeotic protein, are critical for several differentiation processes. Because growth and differentiation are, in general, exclusive of each other, and increasing evidence indicates that Dlk1 expression changes in tumorigenic processes, we studied whether dlk could also affect cell growth. We found that, in response to glucocorticoids, Balb/c 3T3 cells with diminished levels of dlk expression develop foci-like cells that have lost contact inhibition, display altered morphology, and grow faster than control cell lines.

View Article and Find Full Text PDF