Biochim Biophys Acta Mol Cell Res
December 2024
Nuclear speckles, also known as interchromatin granule clusters (IGCs), are subnuclear domains highly enriched in proteins involved in transcription and mRNA metabolism and, until recently, have been regarded primarily as their storage and modification hubs. However, several recent studies on non-neuronal cell types indicate that nuclear speckles may directly contribute to gene expression as some of the active genes have been shown to associate with these structures. Neuronal activity is one of the key transcriptional regulators and may lead to the rearrangement of some nuclear bodies.
View Article and Find Full Text PDF5-Fluorouracil (5-FU) is one of the most widely applied chemotherapeutic agents with a broad spectrum of activity. However, despite this versatile activity, its use poses many limitations. Herein, novel derivatives of 5-FU and dichloroacetic acid have been designed and synthesized as a new type of codrugs, also known as mutual prodrugs, to overcome the drawbacks of 5-FU and enhance its therapeutic efficiency.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
August 2023
Hypertrophic cardiomyopathy is the most common cardiovascular disease, which is characterized by structural and functional myocardial abnormalities. It is caused predominantly by autosomal dominant mutations, mainly in genes encoding cardiac sarcomeric proteins, resulting in diverse phenotypical patterns and a heterogenic clinical course. Unconventional myosin VI (MVI) is one of the proteins important for heart function, as it was shown that a point mutation within MYO6 is associated with left ventricular hypertrophy.
View Article and Find Full Text PDFMyosin VI (MVI) is a unique unconventional myosin ubiquitously expressed in metazoans. Its diverse cellular functions are mediated by interactions with a number of binding partners present in multi-protein complexes. MVI is proposed to play important roles in muscle function and myogenesis.
View Article and Find Full Text PDFJ Muscle Res Cell Motil
June 2022
A report on the first virtual European Muscle Conference.
View Article and Find Full Text PDFCurrently, the etiology of many neuromuscular disorders remains unknown. Many of them are characterized by aberrations in the maturation of the neuromuscular junction (NMJ) postsynaptic machinery. Unfortunately, the molecular factors involved in this process are still largely unknown, which poses a great challenge for identifying potential therapeutic targets.
View Article and Find Full Text PDFLimb-girdle muscular dystrophy type R1 (LGMDR1) is caused by mutations in and is the most common type of recessive LGMD. Even with the use of whole-exome sequencing (WES), only one mutant allele of is found in a significant number of LGMDR patients. This points to a role of non-coding, intronic or regulatory, sequence variants in the disease pathogenesis.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
November 2021
Tauopathies, including Alzheimer's disease (AD), are manifested by the deposition of well-characterized amyloid aggregates of Tau protein in the brain. However, it is rather unlikely that these aggregates constitute the major form of Tau responsible for neurodegenerative changes. Currently, it is postulated that the intermediates termed as soluble oligomers, assembled on the amyloidogenic pathway, are the most neurotoxic form of Tau.
View Article and Find Full Text PDFProtein kinase CK2 has been considered as an attractive drug target for anti-cancer therapy. The synthesis of -hydroxypropyl TBBi and 2MeTBBi derivatives as well as their respective esters was carried out by using chemoenzymatic methods. Concomitantly with kinetic studies toward recombinant CK2, the influence of the obtained compounds on the viability of two human breast carcinoma cell lines (MCF-7 and MDA-MB-231) was evaluated using MTT assay.
View Article and Find Full Text PDFcontains numerous health-promoting compounds that are also proposed to have anti-cancer properties. Herein, we aimed at a contemporaneous evaluation of the effects of polyphenol-rich extracts of berries, leaves, and flowers of six species on the viability and invasive potential on the highly aggressive human glioblastoma U87MG cell line. The treatment with the extracts evoked cytotoxic effects, with the strongest in the berry extracts.
View Article and Find Full Text PDFGlioblastomas are the most frequent and aggressive form of primary brain tumors with no efficient cure. However, they often exhibit specific metabolic shifts that include deficiency in the biosynthesis of and dependence on certain exogenous amino acids. Here, we evaluated, in vitro, a novel combinatory antiglioblastoma approach based on arginine deprivation and canavanine, an arginine analogue of plant origin, using two human glioblastoma cell models, U251MG and U87MG.
View Article and Find Full Text PDFBackground: The combination effect of 5-fluorouracil (5-FU) with either CX-4945 or a new inhibitor of protein kinase CK2, namely 14B (4,5,6,7-tetrabromo-1-(3-bromopropyl)-2-methyl-1-benzimidazole), on the viability of MCF-7 and triple-negative MDA-MB-231 breast cancer cell lines was studied.
Methods: Combination index (CI) values were determined using an MTT-based assay and the Chou-Talalay model. The effect of the tested drug combinations on pro-apoptotic properties and cell cycle progression was examined using flow cytometry.
We have previously postulated that unconventional myosin VI (MVI) could be involved in myoblast differentiation. Here, we addressed the mechanism(s) of its involvement using primary myoblast culture derived from the hindlimb muscles of Snell's waltzer mice, the natural MVI knockouts (MVI-KO). We observed that MVI-KO myotubes were formed faster than control heterozygous myoblasts (MVI-WT), with a three-fold increase in the number of myosac-like myotubes with centrally positioned nuclei.
View Article and Find Full Text PDFThree series of the β-pyrimidine alanines, including willardiine - a naturally occurring amino acid, were prepared from the l-serine-derived sulfamidates. Compounds 3b, 4a and 4b demonstrated antiproliferative activity toward the studied cancer cell lines, albeit the effect of these compounds on human brain astrocytoma MOG-G-CCM cells was more significant than on human neuroblastoma SK-N-AS cells. The cytosine analog of willardiine, compound 4b, reduced viability of MOG-G-CCM cells with EC = 36 ± 2 μM, more effectively than AMPA antagonist GYKI 52466.
View Article and Find Full Text PDFDuring spermiogenesis in mammals, actin filaments and a variety of actin-binding proteins are involved in the formation and function of highly specialized testis-specific structures. Actin-based motor proteins, such as myosin Va and VIIa, play a key role in this complex process of spermatid transformation into mature sperm. We have previously demonstrated that myosin VI (MYO6) is also expressed in mouse testes.
View Article and Find Full Text PDFMyoblast fusion into myotubes is one of the crucial steps of skeletal muscle development (myogenesis). The fusion is preceded by specification of a myogenic lineage (mesodermal progenitors) differentiating into myoblasts and is followed by myofiber-type specification and neuromuscular junction formation. Similarly to other processes of myogenesis, the fusion requires a very precise spatial and temporal regulation occuring both during embryonic development as well as regeneration and repair of the muscle.
View Article and Find Full Text PDFThe observations that numerous cancers are characterized by impairment in arginine synthesis and that deficit of exogenous arginine specifically affects their growth and viability are the ground for arginine deprivation-based anticancer treatment strategy. This review addresses molecular mechanisms of the human glioblastoma cell response to arginine deprivation. Our earlier studies have shown that arginine deprivation specifically impairs glioblastoma cell motility, adhesion and invasiveness.
View Article and Find Full Text PDFMyosin VI (MYO6) is an actin-based motor that has been implicated in a wide range of cellular processes, including endocytosis and the regulation of actin dynamics. MYO6 is crucial for actin/membrane remodeling during the final step of Drosophila spermatogenesis, and MYO6-deficient males are sterile. This protein also localizes to actin-rich structures involved in mouse spermiogenesis.
View Article and Find Full Text PDFLGMD2L is a subtype of limb-girdle muscular dystrophy (LGMD), caused by recessive mutations in ANO5, encoding anoctamin-5 (ANO5). We present the analysis of five patients with skeletal muscle weakness for whom heterozygous mutations within ANO5 were identified by whole exome sequencing (WES). Patients varied in the age of the disease onset (from 22 to 38 years) and severity of the morphological and clinical phenotypes.
View Article and Find Full Text PDFBackground: Limb girdle muscular dystrophies (LGMD) are a group of heterogeneous hereditary myopathies with similar clinical symptoms. Disease onset and progression are highly variable, with an elusive genetic background, and around 50% cases lacking molecular diagnosis.
Methods: Whole exome sequencing (WES) was performed in 73 patients with clinically diagnosed LGMD.
Myosin VI (MVI) is a unique actin-based motor protein moving towards the minus end of actin filaments, in the opposite direction than other known myosins. Besides well described functions of MVI in endocytosis and maintenance of Golgi apparatus, there are few reports showing its involvement in transcription. We previously demonstrated that in neurosecretory PC12 cells MVI was present in the cytoplasm and nucleus, and its depletion caused substantial inhibition of cell migration and proliferation.
View Article and Find Full Text PDF