This work evaluated the removal efficiency of 13 wastewater-borne pharmaceuticals in a pilot constructed wetland (CW) operated under different aeration strategies (no aeration, intermittent and continuous). Aeration improved the removal of conventional wastewater parameters and the targeted micropollutants, compared to the non-aerated treatment. Reduction of chemical oxygen demand (COD) and total nitrogen (TN) was slightly higher applying intermittent aeration than applying continuous aeration, the opposite was observed for the investigated pharmaceuticals.
View Article and Find Full Text PDFThe removal of organic micropollutants (OMPs) has been investigated in constructed wetlands (CWs) operated as bioelectrochemical systems (BES). The operation of CWs as BES (CW-BES), either in the form of microbial fuel cells (MFC) or microbial electrolysis cells (MEC), has only been investigated in recent years. The presented experiment used CW meso-scale systems applying a realistic horizontal flow regime and continuous feeding of real urban wastewater spiked with four OMPs (pharmaceuticals), namely carbamazepine (CBZ), diclofenac (DCF), ibuprofen (IBU) and naproxen (NPX).
View Article and Find Full Text PDFThe occurrence and removal of 49 antibiotics and 11 selected antibiotic resistance genes (ARGs) were investigated in 2 vertical subsurface flow (VF) constructed wetlands (1.5 m each): an unsaturated (UVF) unit and a partially saturated (SVF) unit (0.35 m saturated out of 0.
View Article and Find Full Text PDFThe present study evaluated the capacity of a semi-closed, tubular horizontal photobioreactor (PBR) to remove pesticides from agricultural run-off. The study was carried out in summer (July) to study its efficiency under the best conditions (highest solar irradiation). A total of 51 pesticides, including 10 transformation products, were selected and investigated based on their consumption rate and environmental relevance.
View Article and Find Full Text PDFEmerging organic contaminants (EOCs) include a diverse group of chemical compounds, such as pharmaceuticals and personal care products (PPCPs), pesticides, hormones, surfactants, flame retardants and plasticizers. Many of these compounds are not significantly removed in conventional wastewater treatment plants and are discharged to the environment, presenting an increasing threat to both humans and natural ecosystems. Recently, antibiotics have received considerable attention due to growing microbial antibiotic-resistance in the environment.
View Article and Find Full Text PDFThe present study evaluates the removal capacity of two high rate algae ponds (HRAPs) to eliminate 12 pharmaceuticals (PhACs) and 26 of their corresponding main metabolites and transformation products. The efficiency of these ponds, operating with and without primary treatment, was compared in order to study their capacity under the best performance conditions (highest solar irradiance). Concentrations of all the target compounds were determined in both water and biomass samples.
View Article and Find Full Text PDFThe present study evaluated the removal capacity of a UASB-HRAP treatment system, combining anaerobic and microalgae-based, aerobic treatment, for eleven organic micropollutants present in raw sewage, including pharmaceuticals, estrogens and xenoestrogens. The UASB reactor and the HRAP were operated at a hydraulic retention time (HRT) of 7 h and 8 days, respectively. Influent and effluent samples from the UASB and HRAP were collected periodically.
View Article and Find Full Text PDFThe aim of this study was to investigate the PHB and glycogen accumulation dynamics in two photobioreactors inoculated with different monocultures of wastewater-borne cyanobacteria, using a three-stage feeding strategy (growth phase, feast-famine phase and feast phase). Two cyanobacterial monocultures containing members of Synechocystis sp. or Synechococcus sp.
View Article and Find Full Text PDFIn this work, a strategy based on photo-sequencing batch operation was used to select cyanobacteria over unsettled green algae in a wastewater treatment system, evaluating for the first time the effect of hydraulic regimes on nutritional dynamics and microorganisms' competition. During 30 days of operation, an initial microalgae mixed consortia dominated by the green microalgae Scenedesmus sp. was cultivated in two different photo-sequencing batch reactors operated at hydraulic retention time (HRT) of 6 days (PSBR) and 4 days (PSBR) at a theoretical solids retention time (SRT) of 10 d.
View Article and Find Full Text PDFWithin the European project INCOVER, an experimental microalgae-based treatment system has been built for wastewater reuse and added-value products generation. This article describes this new experimental plant and the start-up stage, starting from the new design of three semi-closed horizontal photobioreactors with low energy requirements for microalgae cultivation (30 m total), using agricultural runoff and urban wastewater as feedstock. The inflow nutrients concentration is adjusted to select cyanobacteria, microalgae able to accumulate polyhydroxybutyrates, which can be used for bioplastics production.
View Article and Find Full Text PDFIn the present study, different photoperiods and nutritional conditions were applied to a mixed wastewater-borne cyanobacterial culture in order to enhance the intracellular accumulation of polyhydroxybutyrates (PHBs) and carbohydrates. Two different experimental set-ups were used. In the first, the culture was permanently exposed to illumination, while in the second it was submitted to light/dark alternation (12 h cycles).
View Article and Find Full Text PDFThe potential ecotoxicological effects of mixtures of contaminants in the aquatic environment are generating a global concern. Benthic invertebrates, such as the crustacean Gammarus fossarum, are key in the functioning of aquatic ecosystems, and are frequently used as sentinel species of water quality status. The aim of this work was to study the effects of a mixture of the most frequently detected surfactants in the bioconcentration kinetics of two pharmaceuticals in G.
View Article and Find Full Text PDFThe main objective of this study was to select and grow wastewater-borne cyanobacteria in a closed photobioreactor (PBR) inoculated with a mixed consortium of microalgae. The 30L PBR was fed with a mixture of urban secondary effluent and digestate, and operated in semi-continuous mode. Based on the nutrients variation of the influent, three different periods were distinguished during one year of operation.
View Article and Find Full Text PDFA novel, fully automated analytical methodology based on dual column liquid chromatography coupled to tandem mass spectrometry (LC-LC-MS(2)) has been developed and validated for the analysis of 12 pharmaceuticals and 20 metabolites and transformation products in different types of water (influent and effluent wastewaters and surface water). Two LC columns were used - one for pre-concentration of the sample and the second for separation and analysis - so that water samples were injected directly in the chromatographic system. Besides the many advantages of the methodology, such as minimization of the sample volume required and its manipulation, both compounds ionized in positive and negative mode could be analyzed simultaneously without compromising the sensitivity.
View Article and Find Full Text PDFA multitude of pharmaceuticals enter surface waters via discharges of wastewater treatment plants (WWTPs), and many raise environmental and health concerns. Chemical fate models predict their concentrations using estimates of mass loading, dilution and in-stream attenuation. However, current comprehension of the attenuation rates remains a limiting factor for predictive models.
View Article and Find Full Text PDFThe present study describes the development, validation and a practical application of a fully automated analytical method based on pressurized liquid extraction (PLE) followed by solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) for the simultaneous determination of 22 sulfonamides, including five acetylated metabolites, in sewage sludge and soil samples. Both matrix matched calibration curves and standard calibration curves were built in order to evaluate the potential matrix effects during analysis, and different internal standards were used to compensate these effects during quantification. The recovery efficiencies were found to be 60-130% for the majority of the sulfonamides in both matrices and at two spike levels.
View Article and Find Full Text PDFThe present study describes the evaluation of the risk posed by the occurrence of sulfonamides (SAs) in wastewaters. A fully automated analytical method based on on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (on line SPE-LC-MS/MS) was developed, validated and applied for the analysis of sixteen SAs and, for the first time in wastewaters and sewage sludge, five of their acetylated metabolites. Influent and effluent samples from twenty two different wastewater treatment plants (WWTPs) in Catalonia (Spain) and sewage sludge from fifteen of them were analyzed; removal rates (RE%) and half-lives (t(1/2)) for each SA were calculated.
View Article and Find Full Text PDFThis work reports the removal efficiencies of nine sulfonamides (SAs) and one of their acetylated metabolites during conventional activated sludge (CAS) and membrane bioreactor (MBR) treatments. Two different types of membranes were studied, hollow-fiber membranes and flat-sheet membranes, in two separate pilot plants operating in parallel to a full-scale CAS treatment. A total of 48 water samples and 16 sewage sludge samples were analyzed by liquid chromatography-tandem mass spectrometry.
View Article and Find Full Text PDFThis work evaluates the biodegradation of N(4)-acetylsulfapyridine (AcSPY) and N(4)-acetylsulfamethazine (AcSMZ), metabolites of two of the most commonly used sulfonamides (SAs) in human and veterinary medicine, respectively. Aerobic transformation in effluent wastewater was simulated using aerated fixed-bed bioreactors. No visible changes in concentration were observed in the AcSMZ reactor after 90 days, whereas AcSPY was fully degraded after 32 days of experiment.
View Article and Find Full Text PDFSulfapyridine (SPY), sulfonamide (SA) typically used in human therapies, and veterinary SA sulfamethazine (SMZ), are amongst the two SAS most frequently detected in effluent wastewater and surface water respectively. Within this context, this study reports the behaviour of both SAs and their acetylated metabolites, AcSPY and AcSMZ, under artificial irradiance conditions in both high performance liquid chromatography (HPLC) water and in reclaimed wastewater, in order to compare the influence of dissolved organic matter (DOM) and also inorganic matter in the photolysis kinetics. Estimated degradation rate constants (k) ranged from 0.
View Article and Find Full Text PDF