A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
View Article and Find Full Text PDFNon-invasive and fast diagnostic tools based on volatolomics hold great promise in the control of infectious diseases. However, the tools to identify microbial volatile organic compounds (VOCs) discriminating between human pathogens are still missing. Artificial intelligence is increasingly recognised as an essential tool in health sciences.
View Article and Find Full Text PDFAntibiotic resistance in Streptococcus pneumoniae has increased worldwide by the spread of a few clones. Fluoroquinolone resistance occurs mainly by alteration of their intracellular targets, the type II DNA topoisomerases, which is acquired either by point mutation or by recombination. Increase in fluoroquinolone-resistance may depend on the balance between antibiotic consumption and the cost that resistance imposes to bacterial fitness.
View Article and Find Full Text PDFStreptococcus pneumoniae bacteriophages (phages) rely on a holin-lysin system to accomplish host lysis. Due to the lack of lysin export signals, it is assumed that holin disruption of the cytoplasmic membrane allows endolysin access to the peptidoglycan. We investigated the lysis mechanism of pneumococcal phage SV1, by using lysogens without holin activity.
View Article and Find Full Text PDFStreptococcus pneumoniae (pneumococcus) is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages) residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation.
View Article and Find Full Text PDFMost bacteriophages (phages) release their progeny through the action of holins that form lesions in the cytoplasmic membrane and lysins that degrade the bacterial peptidoglycan. Although the function of each protein is well established in phages infecting Streptococcus pneumoniae, the role--if any--of the powerful bacterial autolysin LytA in virion release is currently unknown. In this study, deletions of the bacterial and phage lysins were done in lysogenic S.
View Article and Find Full Text PDFIn most clinical microbiology laboratories optochin susceptibility is used in the screening and identification of Streptococcus pneumoniae. We report the characterization of 32 optochin-resistant S. pneumoniae strains from 10 laboratories that constituted 3.
View Article and Find Full Text PDF