Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is mainly treated with cytotoxic chemotherapy. However, this treatment is not always effective, and an important percentage of patients develop recurrence. Nanomaterials are emerging as alternative treatment options for various diseases, including cancer.
View Article and Find Full Text PDFIntense synthetic efforts have been directed towards the development of noncalcemic analogs of 1,25-dihydroxyvitamin D. We describe here the structural analysis and biological evaluation of two derivatives of 1,25-dihydroxyvitamin D with modifications limited to the replacement of the 25-hydroxyl group by a 25-amino or 25-nitro groups. Both compounds are agonists of the vitamin D receptor.
View Article and Find Full Text PDFHead and neck squamous cell carcinoma (HNSCC) is a remarkably heterogeneous disease with around 50% mortality, a fact that has prompted researchers to try new approaches to improve patient survival. Hemoxygenase-1 (HO-1) is the rate-limiting step for heme degradation into carbon monoxide, free iron and biliverdin. We have previously reported that HO-1 protein is upregulated in human HNSCC samples and that it is localized in the cytoplasmic and nuclear compartments; additionally, we have demonstrated that HO-1 nuclear localization is associated with malignant progression.
View Article and Find Full Text PDFBackground: 1α,25-dihydroxy vitamin D3 (calcitriol) shows potent growth-inhibitory properties on different cancer cell lines, but its hypercalcemic effects have severely hampered its therapeutic application. Therefore, it is important to develop synthetic calcitriol analogues that retain or even increase its antitumoral effects and lack hypercalcemic activity. Based on previous evidence of the potent antitumor effects of the synthetic alkynylphosphonate EM1 analogue, we have now synthesized a derivative called SG.
View Article and Find Full Text PDFDespite advances in breast cancer (BC) treatment, its mortality remains high due to intrinsic or acquired resistance to therapy. Several ongoing efforts are being made to develop novel drugs to treat this pathology with the aim to overcome resistance, prolong patient survival and improve their quality of life. We have previously shown that the non-hypercalcemic vitamin D analogues EM1 and UVB1 display antitumor effects in preclinical studies employing conventional cell lines and animal models developed from these cells.
View Article and Find Full Text PDFThe vitamin D receptor (VDR) constitutes a promising therapeutic target for the treatment of cancer. Unfortunately, its natural agonist calcitriol does not have clinical utility due to its potential to induce hypercalcemic effects at the concentrations required to display antitumoral activity. For this reason, the search for new calcitriol analogues with adequate therapeutic profiles has been actively pursued by the scientific community.
View Article and Find Full Text PDFThe active form of vitamin D , calcitriol, is a potent antiproliferative compound. However, when effective antitumor doses of calcitriol are used, hypercalcemic effects are observed, thus blocking its therapeutic application. To overcome this problem, structural analogues have been designed with the aim of retaining or even increasing the antitumor effects while decreasing its calcemic activity.
View Article and Find Full Text PDFHeme oxygenase-1 (HO-1) is an enzyme involved in cellular responses to oxidative stress and has also been shown to regulate processes related to cancer progression. In this regard, HO-1 has been shown to display a dual effect with either antitumor or protumor activity, which is also true for breast cancer (BC). In this work, we address this discrepancy regarding the role of HO-1 in BC.
View Article and Find Full Text PDFCalcitriol analogs have shown promising potential as compounds to be used in cancer chemotherapy. This report presents the synthesis of a novel vitamin D derivative with an amide and a carboxyl group in its side chain, called ML-344. In addition, we report its in vitro antitumor activity and its in vivo calcemic effects.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is associated with poor prognosis, high local recurrence rate and high rate of metastasis compared with other breast cancer subtypes. In addition, TNBC lacks a targeted therapy. This scenario highlights the need for novel compounds with high potential for TNBC treatment.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is the worst and most common brain tumor, characterized by high proliferation and invasion rates. The current standard treatment is mainly based on chemoradiotherapy and this approach has slightly improved patient survival. Thus, novel strategies aimed at prolonging the survival and ensuring a better quality of life are necessary.
View Article and Find Full Text PDFD-Fraction is protein-bound β-1,6 and β-1,3 glucans (proteoglucan) extracted from the edible and medicinal mushroom Grifola frondosa (Maitake). The antitumoral effect of D-Fraction has long been exclusively attributed to their immunostimulatory capacity. However, in recent years increasing evidence showed that D-Fraction directly affects the viability of canine and human tumor cells, independent of the immune system.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
October 2016
Vitamin D has been shown to display a wide variety of antitumour effects, but their therapeutic use is limited by its severe side effects. We have designed and synthesized a Gemini vitamin D analogue of calcitriol (UVB1) which has shown to display antineoplastic effects on different cancer cell lines without causing hypercalcemia. The aim of this work has been to investigate, by employing in silico, in vitro, and in vivo assays, whether UVB1 inhibits human colorectal carcinoma progression.
View Article and Find Full Text PDFThe active form of vitamin D3, calcitriol, plays a major role in maintaining calcium/phosphate homeostasis. In addition, it is a potent antiproliferative and prodifferentiating agent. However, when effective antitumor doses of calcitriol are employed, hypercalcemic effects are observed, thus precluding its therapeutic application.
View Article and Find Full Text PDFThe active form of vitamin D3, 1α,25(OH)2D3, plays a major role in maintaining calcium/phosphate homeostasis. In addition, it is a potent antiproliferative and pro-differentiating agent. Unfortunately, it usually causes hypercalcemia in vivo when effective antitumour doses are used.
View Article and Find Full Text PDFThere is evidence that p300, a transcriptional co-factor and a lysine acetyl-transferase, could play a role both as an oncoprotein and as a tumor suppressor, although little is known regarding its role in breast cancer (BC). First we investigated the role p300 has on BC by performing pharmacological inhibition of p300 acetyl-transferase function and analyzing the effects on cell count, migration and invasion in LM3 murine breast cancer cell line and on tumor progression in a syngeneic murine model. We subsequently studied p300 protein expression in human BC biopsies and evaluated its correlation with clinical and histopathological parameters of the patients.
View Article and Find Full Text PDFVitamin D and its analogs have been shown to display anti-proliferative effects in a wide variety of cancer types including glioblastoma multiforme (GBM). These anticancer effects are mediated by its active metabolite, 1α, 25-dihydroxyvitamin D3 (calcitriol) acting mainly through vitamin D receptor (VDR) signaling. In addition to its involvement in calcitriol action, VDR has also been demonstrated to be useful as a prognostic factor for some types of cancer.
View Article and Find Full Text PDFA new vitamin D(2) analogue was synthesized using the Julia-Kocienski olefination. It has antiproliferative effects on cell lines from squamous cell carcinomas of colon and head and neck, but is also as hypercalcaemic as calcitriol in vivo.
View Article and Find Full Text PDF