Publications by authors named "Maria J Escamez"

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic disease caused by loss of function mutations in the gene coding for collagen VII (C7) due to deficient or absent C7 expression. This disrupts structural and functional skin architecture, leading to blistering, chronic wounds, inflammation, important systemic symptoms affecting the mouth, gastrointestinal tract, cornea, and kidney function, and an increased skin cancer risk. RDEB patients have an extremely poor quality of life and often die at an early age.

View Article and Find Full Text PDF

Patients with recessive dystrophic epidermolysis bullosa (RDEB) experience numerous complications, which are exacerbated by inflammatory dysregulation and infection. Understanding the immunological mechanisms is crucial for selecting medications that balance inflammation control and immunocompetence. In this cross-sectional study, aiming to identify potential immunotherapeutic targets and inflammatory biomarkers, we delved into the interrelationship between clinical severity and systemic inflammatory parameters in a representative RDEB cohort.

View Article and Find Full Text PDF

Importance: Epidermolysis bullosa simplex with muscular dystrophy (EBS-MD) is an autosomal recessive disorder caused by pathogenic variants in PLEC1, which encodes plectin. It is characterized by mild mucocutaneous fragility and blistering and muscle weakness. Translational readthrough-inducing drugs, such as repurposed aminoglycoside antibiotics, may represent a valuable therapeutic alternative for untreatable rare diseases caused by nonsense variants.

View Article and Find Full Text PDF

Familial melanoma accounts for 10% of cases, being the main high-risk gene. However, the mechanisms underlying melanomagenesis in these cases remain poorly understood. Our aim was to analyze the transcriptome of melanocyte-keratinocyte co-cultures derived from healthy skin from familial melanoma patients vs.

View Article and Find Full Text PDF

Defective healing leading to cutaneous ulcer formation is one of the most feared complications of diabetes due to its consequences on patients' quality of life and on the healthcare system. A more in-depth analysis of the underlying molecular pathophysiology is required to develop effective healing-promoting therapies for those patients. Major architectural and functional differences with human epidermis limit extrapolation of results coming from rodents and other small mammal-healing models.

View Article and Find Full Text PDF

Recessive dystrophic epidermolysis bullosa (RDEB) is an incurable inherited mucocutaneous fragility disorder characterized by recurrent blisters, erosions, and wounds. Continuous blistering triggers overlapping cycles of never-ending healing and scarring commonly evolving to chronic systemic inflammation and fibrosis. The systemic treatment with allogeneic mesenchymal cells (MSC) from bone marrow has previously shown benefits in RDEB.

View Article and Find Full Text PDF
Article Synopsis
  • - Kindler Syndrome (KS) is a rare skin condition caused by mutations in the FERMT1 gene, leading to fragile skin, premature aging, and increased risk of non-melanoma skin cancers, particularly squamous cell carcinoma (SCC).
  • - In a study of 91 adult KS patients, 13 developed SCC, with the risk significantly increasing to 66.7% for those over 60 years of age; over half of these cases were aggressive and metastatic.
  • - The research highlights unique patterns of SCC occurrence, especially around the hands and mouth, and underscores the importance of regular monitoring for skin lesions in KS patients due to the lack of specific mutations linked to SCC development.
View Article and Find Full Text PDF

Gene editing constitutes a novel approach for precisely correcting disease-causing gene mutations. Frameshift mutations in COL7A1 causing recessive dystrophic epidermolysis bullosa are amenable to open reading frame restoration by non-homologous end joining repair-based approaches. Efficient targeted deletion of faulty COL7A1 exons in polyclonal patient keratinocytes would enable the translation of this therapeutic strategy to the clinic.

View Article and Find Full Text PDF

Recessive dystrophic epidermolysis bullosa is a severe skin fragility disease caused by loss of functional type VII collagen at the dermal-epidermal junction. A frameshift mutation in exon 80 of COL7A1 gene, c.6527insC, is highly prevalent in the Spanish patient population.

View Article and Find Full Text PDF

Dystrophic epidermolysis bullosa is a rare blistering condition caused by mutations in the COL7A1 gene. Different clinical variants have been described, with dominant and recessive inheritance, but no consistent findings have been elucidated to establish a genotype-phenotype correlation. We present three unrelated patients with two identical pathogenic compound heterozygous mutations in the COL7A1 gene that developed different clinical forms of dystrophic epidermolysis bullosa-epidermolysis bullosa pruriginosa and mild recessive non-Hallopeau-Siemens-raising the possibility of other genetic or environmental modifying factors responsible for the phenotype of the disease.

View Article and Find Full Text PDF

The MC1R gene plays a crucial role in pigmentation synthesis. Loss-of-function MC1R variants, which impair protein function, are associated with red hair color (RHC) phenotype and increased skin cancer risk. Cultured cutaneous cells bearing loss-of-function MC1R variants show a distinct gene expression profile compared to wild-type MC1R cultured cutaneous cells.

View Article and Find Full Text PDF

Germline mutations in CDKN2A and/or red hair color variants in MC1R genes are associated with an increased susceptibility to develop cutaneous melanoma or non melanoma skin cancer. We studied the impact of the CDKN2A germinal mutation p.G101W and MC1R variants on gene expression and transcription profiles associated with skin cancer.

View Article and Find Full Text PDF

Recessive dystrophic epidermolysis bullosa (RDEB) is caused by deficiency of type VII collagen due to COL7A1 mutations such as c.6527insC, recurrently found in the Spanish RDEB population. Assessment of clonal correction-based therapeutic approaches for RDEB requires large expansions of cells, exceeding the replication capacity of human primary keratinocytes.

View Article and Find Full Text PDF

Cutaneous diabetic wounds greatly affect the quality of life of patients, causing a substantial economic impact on the healthcare system. The limited clinical success of conventional treatments is mainly attributed to the lack of knowledge of the pathogenic mechanisms related to chronic ulceration. Therefore, management of diabetic ulcers remains a challenging clinical issue.

View Article and Find Full Text PDF

Epidermolysis bullosa simplex with mottled hyperpigmentation (EBS-MP) is an uncommon subtype of EBS. Its clinical features depend on the age of diagnosis, and clinical variations have been described even within family members. We present six cases from two unrelated Spanish families each with several affected members with EBS-MP and review the clinical and genetic findings in all reported patients.

View Article and Find Full Text PDF

Despite the high incidence of revertant mosaicism (35%) in patients with the genetic skin disease epidermolysis bullosa (EB) due to correcting mutations in the genes COL17A1 and LAMB3, revertant mosaicism has not been described for COL7A1 until recently. Mutations in COL7A1 are responsible for the most devastating form of EB in adults, which is characterized by cocooned "mitten" deformities of the hands. This report shows in vivo reversion of an inherited COL7A1 mutation in a patient with recessive dystrophic EB who was homozygous for the frameshift mutation COL7A1:c.

View Article and Find Full Text PDF

Using a recently described skin-humanized model based on the engraftment of human bioengineered skin equivalents onto immunodeficient mice, we compared the efficacy of different in vivo gene transfer strategies aimed at delivering growth factors to promote skin wound healing. The approaches involving transient delivery of keratinocyte growth factor (KGF) to wounds performed in the engrafted human skin included (1) KGF gene transfer by intradermal adenoviral injection; (2) KGF gene transfer by adenoviral vector immobilized in a fibrin carrier; and (3) KGF-adenoviral gene-transferred human fibroblasts embedded in a fibrin matrix. All delivery systems achieved KGF protein overproduction at the wound site, with a concomitant re-epithelialization enhancement.

View Article and Find Full Text PDF

The human antimicrobial peptide LL-37 plays an important role in host defense against infection. In addition to its antimicrobial action, other activities have been described in eukaryotic cells that may contribute to the healing response. In this study, we demonstrated that in vitro human cathelicidin activates migration of the human keratinocyte cell line HaCaT, involving phenotypic changes related to actin dynamics and associated to augmented tyrosine phosphorylation of proteins involved in focal adhesion complexes, such as focal adhesion kinase and paxillin.

View Article and Find Full Text PDF

Skin tissue engineering emerged as an experimental regenerative therapy motivated primarily by the critical need for early permanent coverage of extensive burn injuries in patients with insufficient sources of autologous skin for grafting. With time, the approach evolved toward a wider range of applications including disease modeling. We have established a skin-humanized mouse model system consisting in bioengineered human-skin-engrafted immunodeficient mice.

View Article and Find Full Text PDF

Cutaneous wound-healing disorders are a major health problem that requires the development of innovative treatments. Whithin this context, the search for reliable human wound-healing models that allow us to address both mechanistic and therapeutic matters is warranted. In this study, we have developed a novel invivo wound-healing model in a genetically modified human context.

View Article and Find Full Text PDF

Infection represents a major associated problem in severely burned patients, as it causes skin graft failure and increases the risk of mortality. Topical and systemic antibiotic treatment is limited by the appearance of resistant bacterial strains. Antimicrobial peptides (AMPs) are gene-encoded "natural antibiotics" that form part of the innate mechanism of defense and may be active against such antibiotic-resistant microorganisms.

View Article and Find Full Text PDF