Publications by authors named "Maria J Benoliel"

Although the evaluation of the uncertainty of an analytical method is a mandatory step in the method's validation, its applicability to the monitoring of trace compounds in complex samples is not simple, nor is it part of the routine of most laboratories, namely those dedicated to research. This manuscript focuses on the full validation of an analytical procedure for determining trace concentrations of twenty-four pharmaceutical active compounds (PhACs) in wastewaters using solid-phase extraction (SPE) and ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). The method optimization was performed on different wastewater matrices, namely influents and final effluents from two distinct wastewater treatment plants (WWTPs).

View Article and Find Full Text PDF

In water treatment plants (WTPs), chemical agents, such as chlorine and ozone, might react with organic matter and anthropogenic contaminants, forming a high diversity of disinfection by-products (DBPs). Due to the potential toxicological effects, the identification of unregulated DBPs (UR-DBPs) is critical to help water managers in the selection of effective water treatment processes, contributing to improving water safety plans. Given the limited validated analytical methods to detect UR-DBPs, here we developed new multi-residue gas chromatography coupled with mass spectrometry methodologies for the detection and quantification of 15 UR-DBPs, including aldehydes, haloketones (HKs), nitrosamines and alcohols, in drinking water matrices.

View Article and Find Full Text PDF

Twenty-four pharmaceutical active compounds (PhACs) were evaluated in the soft tissues of clams Ruditappes decussatus exposed along a 1.5-km dispersal gradient of the treated effluent from an urban wastewater treatment plant discharging in Ria Formosa, and compared with those in the marine waters and discharged effluents. The clams were exposed for 1 month, in June-July 2016, 2017 and 2018.

View Article and Find Full Text PDF

Water quality monitoring is a fundamental tool in the management of freshwater resources. The purpose of monitoring is to provide meaningful quality data for local action planning and catchment-wide decision making. The assessment of water quality is crucial to guarantee the efficient operation of the Water Treatment Plants (WTPs), promoting health conditions and contributing for a more sustainable urban water cycle.

View Article and Find Full Text PDF

Wildfire effects go beyond direct impact in terrestrial ecosystems. Specifically, the periphytic communities of aquatic ecosystems standing within and downstream the burnt areas are relevant ecological receptors of post-fire runoff contamination. Nevertheless, the off-site impacts of wildfires in these communities are limitedly studied so far.

View Article and Find Full Text PDF

Pharmaceutical active compounds (PhACs) belonging to analgesics, antibiotics, and non-steroidal anti-inflammatory drugs (NSAIDs) therapeutic classes were monitored in wastewater influents and effluents from two Portuguese urban wastewater treatment plants (UWWTPs) for 24 months. Both facilities were chosen due to their effluents are discharged in highly touristic and sensitive areas, Tagus river and Ria Formosa coastal lagoon, respectively. Target PhACs, acetaminophen, diclofenac, ibuprofen, naproxen, sulfadiazine, and sulfamethoxazole were measured using solid-phase extraction (SPE) coupled to liquid chromatography tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

The thermal decomposition, amalgamation, and atomic absorption spectrometry (TDA-AAS) method was validated for mercury (Hg) determination in sludge samples. A linear range was obtained from 30 to 200 ng. The TDA-AAS method provides a limit of quantification (LOQ) well below the legal maximum admitted concentration of Hg in sludge samples, which makes it suitable to measure its concentrations at the imposed legal limits, and for monitoring studies of Hg trace levels in sludge samples.

View Article and Find Full Text PDF

Disinfection By-products (DBPs) are formed during the chemical treatment of water for human consumption, by the reaction of raw water with chemical agents used in the different steps of the process. Disinfection is one of the most important steps, inactivating pathogens and preventing their regrowth during water distribution. However, it is also involved in DBPs formation due to the use of disinfectant agents, such as chlorine, which reacts with dissolved precursors, such as pharmaceuticals, toxins, pesticides, among others.

View Article and Find Full Text PDF

Hepatitis E virus (HEV) is a non-enveloped single-stranded positive-sense RNA virus, belonging to the Hepeviridae family, resistant to environmental conditions, and transmitted by the consumption of contaminated water. This virus is responsible for both sporadic and epidemic outbreaks, leading to thousands of infections per year in several countries, and is thus considered an emerging disease in Europe and Asia. This study refers to a survey in Portugal during 2019, targeting the detection and eventual quantification of enteric viruses in samples from surface and drinking water.

View Article and Find Full Text PDF

Disinfection of water system is an essential strategy to protect human health from pathogens and prevent their regrowth during water distribution, but the reaction of disinfectant agents with organic matter can lead to the formation of disinfection by-products (DBPs). Given their widespread occurrence, potential human health impacts and (eco)toxicity associated with exposure to DBPs are of particular interest due to their potential carcinogenicity and vary non-carcinogenic effects, such as endocrine disruption. Understanding the public health implications of this emerging issue is crucial for societies and decision-makers, supporting more effective water safety plans.

View Article and Find Full Text PDF

Achromobacter denitrificans strain PR1, previously found to harbour specific degradation pathways with high sulfamethoxazole (SMX) degradation rates, was bioaugmented into laboratory-scale membrane bioreactors (MBRs) operated under aerobic conditions to treat SMX-containing real domestic wastewater. Different hydraulic retention times (HRTs), which is related to reaction time and loading rates, were considered and found to affect the SMX removal efficiency. The availability of primary substrates was important in both bioaugmented and non-bioaugmented activated sludge (AS) for cometabolism of SMX.

View Article and Find Full Text PDF

Wastewater treatments can eliminate or remove a substantial amount of pharmaceutical active compounds (PhACs), but there may still be significant concentrations of them in effluents discharged into surface water bodies. Beirolas wastewater treatment plant (WWTP) is located in the Lisbon area and makes its effluent discharges into Tagus estuary (Portugal). The main objective of this study is to quantify a group of 32 PhACs in the different treatments used in this WWTP.

View Article and Find Full Text PDF

The water constituents that are currently subject to legal control are only a small fraction of the vast number of chemical substances and microorganisms that may occur in both the environment and water resources. The main objective of the present study was to study the health impact resulting from exposure to a mixture of pharmaceuticals that have been detected in tap water at low doses. Analyses of atenolol, caffeine, erythromycin, carbamazepine, and their metabolites in blood, urine, feces, fat tissue, liver, and kidney after exposure to a mixture of these pharmaceuticals in treated drinking water were performed.

View Article and Find Full Text PDF

A sequential water treatment combining low pressure ultraviolet direct photolysis with nanofiltration was evaluated to remove hormones from water, reduce endocrine disrupting activity, and overcome the drawbacks associated with the individual processes (production of a nanofiltration-concentrated retentate and formation of toxic by-products). 17β-Estradiol, 17α-ethinylestradiol, estrone, estriol, and progesterone were spiked into a real water sample collected after the sedimentation process of a drinking water treatment plant. Even though the nanofiltration process alone showed similar results to the combined treatment in terms of the water quality produced, the combined treatment offered advantage in terms of the load of the retentate and decrease in the endocrine-disrupting activity of the samples.

View Article and Find Full Text PDF

Sulfonamides (SAs) are one class of the most widely used antibiotics around the world and have been frequently detected in municipal wastewater and surface water in recent years. Their transformation in waste water treatment plants (WWTP) and in water treatment plants (WTP), as well as, their fate and transport in the aquatic environment are of concern. The reaction of six sulfonamides (sulfamethoxazole, sulfapyridine, sulfamethazine, sulfamerazine, sulfathiazole and sulfadiazine) with free chlorine was investigated at a laboratory scale in order to identify the main chlorination by-products.

View Article and Find Full Text PDF

A monitoring study of 31 pharmaceuticals along Lisbon's drinking water supply system was implemented, which comprised the analysis of 250 samples including raw water (surface water and groundwater), and drinking water. Of the 31 pharmaceutical compounds, only sixteen were quantified in the analyzed samples, with levels ranging from 0.005 to 46 ng/L in raw water samples and 0.

View Article and Find Full Text PDF

[S,S]-ethylenediamine-N,N'-diglutaric acid (EDDG) has been gaining interest in the industrial sector as a promising chelator. In this study, the effective metal complexing capacity of EDDG over a wide pH range was modelled and its biodegradability assessed. Results showed that EDDG could effectively bind to several metallic ions in a wide pH range and was completely biodegraded after approximately 15 days by un-acclimatized sludge.

View Article and Find Full Text PDF

A procedure based on solid-phase microextraction (SPME) and gas chromatography coupled with mass spectrometry (GC-MS) was developed and validated in order to analyse 10 phenols in water samples. The optimised conditions were obtained using polyacrylate fibre (PA), 20ml of sample volume, 10% NaCl, pH 4.0 and direct extraction at 35 degrees C and 1000rpm, for 40min.

View Article and Find Full Text PDF

The analysis of pesticides in water samples is a problem of primary concern for quality control laboratories due to the toxicity level of these compounds and their public health risk. In order to evaluate the impact of pesticides in the Lisbon drinking water supply system, following the requirements of the European Union Directive 98/83/EC, we developed and validated an analytical method based on the combination of solid-phase extraction with liquid chromatography and tandem mass spectrometry. In this work, several pesticides were studied: imidacloprid, dimethoate, cymoxanil, carbendazime, phosmet, carbofuran, isoproturon, diuron, methidathion, linuron, pyrimethanil, methiocarbe, tebuconazole and chlorpyrifos.

View Article and Find Full Text PDF