Phase-encoded oscillating neural networks offer compelling advantages over metal-oxide-semiconductor-based technology for tackling complex optimization problems, with promising potential for ultralow power consumption and exceptionally rapid computational performance. In this work, we investigate the ability of these networks to solve optimization problems belonging to the nondeterministic polynomial time complexity class using nanoscale vanadium-dioxide-based oscillators integrated onto a Silicon platform. Specifically, we demonstrate how the dynamic behavior of coupled vanadium dioxide devices can effectively solve combinatorial optimization problems, including Graph Coloring, Max-cut, and Max-3SAT problems.
View Article and Find Full Text PDFOscillatory neural networks (ONNs) exhibit a high potential for energy-efficient computing. In ONNs, neurons are implemented with oscillators and synapses with resistive and/or capacitive coupling between pairs of oscillators. Computing is carried out on the basis of the rich, complex, non-linear synchronization dynamics of a system of coupled oscillators.
View Article and Find Full Text PDFAlternative paradigms to the von Neumann computing scheme are currently arousing huge interest. Oscillatory neural networks (ONNs) using emerging phase-change materials like VO constitute an energy-efficient, massively parallel, brain-inspired, in-memory computing approach. The encoding of information in the phase pattern of frequency-locked, weakly coupled oscillators makes it possible to exploit their rich non-linear dynamics and their synchronization phenomena for computing.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
May 2022
Brain-inspired computing employs devices and architectures that emulate biological functions for more adaptive and energy-efficient systems. Oscillatory neural networks (ONNs) are an alternative approach in emulating biological functions of the human brain and are suitable for solving large and complex associative problems. In this work, we investigate the dynamics of coupled oscillators to implement such ONNs.
View Article and Find Full Text PDFOscillatory Neural Networks (ONNs) are currently arousing interest in the research community for their potential to implement very fast, ultra-low-power computing tasks by exploiting specific emerging technologies. From the architectural point of view, ONNs are based on the synchronization of oscillatory neurons in cognitive processing, as occurs in the human brain. As emerging technologies, VO and memristive devices show promising potential for the efficient implementation of ONNs.
View Article and Find Full Text PDFNano-oscillators based on phase-transition materials are being explored for the implementation of different non-conventional computing paradigms. In particular, vanadium dioxide (VO) devices are used to design autonomous non-linear oscillators from which oscillatory neural networks (ONNs) can be developed. In this work, we propose a new architecture for ONNs in which sub-harmonic injection locking (SHIL) is exploited to ensure that the phase information encoded in each neuron can only take two values.
View Article and Find Full Text PDF