Publications by authors named "Maria Ibanez"

Lead Sulfide (PbS) has garnered attention as a promising thermoelectric (TE) material due to its natural abundance and cost-effectiveness. However, its practical application is hindered by inherently high lattice thermal conductivity and low electrical conductivity. In this study, we address these challenges by surface functionalization of PbS nanocrystals using CuS molecular complexes-based ligand displacement.

View Article and Find Full Text PDF

Background: The use of new psychoactive substances (NPS) has emerged as a significant public health concern globally, due to their unknown and unpredictable effects on both physical and mental health. Among them, synthetic cannabinoids receptor agonists (SCRAs) currently stand as the most widely consumed NPS family in Europe. Since the detection of JWH-018 in 2008, the structures of these compounds have evolved to circumvent legislation and/or enhance their effects, consequently increasing the number of reported SCRAs to be monitored.

View Article and Find Full Text PDF

Background: Preexercise caffeine intake has proven to exert ergogenic effects on cycling performance. However, whether these benefits are also observed under fatigue conditions remains largely unexplored. We aimed to assess the effect of caffeine ingested during prolonged cycling on subsequent time-trial performance in trained cyclists.

View Article and Find Full Text PDF

The primary objective of this study was to evaluate the persistence and elimination of Contaminants of Emerging Concern (CECs) in municipal wastewater treatment plants (MWWTPs) and their presence in the Mapocho River within the metropolitan area of Santiago, Chile. The use of advanced analytical techniques, based on liquid chromatography coupled to both low and high-resolution mass spectrometry, allowed a comprehensive overview on the presence of CECs in samples. Additionally, a preliminary assessment of the microbiological aspects aimed to determine the presence of indicator microorganisms of fecal contamination, such as Escherichia coli and total coliforms was conducted.

View Article and Find Full Text PDF

Introduction: Ovarian cancer is the third most common gynaecological cancer and has a very high mortality rate. The cornerstone of treatment is complete debulking surgery plus chemotherapy. Even with treatment, 80% of patients have a recurrence.

View Article and Find Full Text PDF

Purpose: To assess the effect of 2 work-matched efforts of different intensities on subsequent performance in well-trained cyclists.

Methods: The present study followed a randomized controlled crossover design. Twelve competitive junior cyclists volunteered to participate (age, 17 [1] y; maximum oxygen uptake, 71.

View Article and Find Full Text PDF

Purpose: Data on short courses of antibiotic therapy for Enterobacterales bacteremia in high-risk neutropenic patients are limited. The aim of the study was to describe and compare the frequency of bacteremia relapse, 30-day overall and infection-related mortality, Clostridiodes difficile infection and length of hospital stay since bacteremia among those who received antibiotic therapy for 7 or 14 days.

Methods: This is a multicenter, prospective, observational cohort study in adult high-risk neutropenic patients with hematologic malignancies or hematopoietic stem cell transplant and monomicrobial Enterobacterales bacteremia.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates a new method for detecting illicit drugs in urban wastewater that simplifies the process by directly injecting diluted samples, potentially speeding up data collection and analysis.
  • - The new method is compared to traditional techniques, proving to be accurate, sensitive, and capable of detecting seven common illicit drugs at low concentrations in wastewater samples from various locations in Spain.
  • - This approach not only saves time and reduces resource use, aligning with green chemistry principles, but also enhances the feasibility of monitoring drug use trends on a larger scale or in real time.
View Article and Find Full Text PDF

In recent years, solution processes have gained considerable traction as a cost-effective and scalable method to produce high-performance thermoelectric materials. The process entails a series of critical steps: synthesis, purification, thermal treatments, and consolidation, each playing a pivotal role in determining performance, stability, and reproducibility. We have noticed a need for more comprehensive details for each of the described steps in most published works.

View Article and Find Full Text PDF

We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states.

View Article and Find Full Text PDF

Production of thermoelectric materials from solution-processed particles involves the synthesis of particles, their purification and densification into pelletized material. Chemical changes that occur during each one of these steps render them performance determining. Particularly the purification steps, bypassed in conventional solid-state synthesis, are the cause for large discrepancies among similar solution-processed materials.

View Article and Find Full Text PDF

A comprehensive study assessed indoor air quality parameters, focusing on relevant air pollutants such as particulate matter (PM and PM), gaseous compounds (CO, CO, formaldehyde, NO) and volatile/semi-volatile organic chemicals, as well as respiratory viruses (including SARS-CoV-2), fungi and bacteria in Spanish university classrooms. Non-target screening strategies evaluated the presence of organic pollutants inside and outside the classrooms. Saliva samples from teachers and students were collected to explore correlations between respiratory viruses in the air and biological samples.

View Article and Find Full Text PDF

Reducing defects boosts room-temperature performance of a thermoelectric device.

View Article and Find Full Text PDF

The complexity of the aquatic environment scenario, including the impact of urban wastewater, together with the huge number of potential hazardous compounds that may be present in waters, makes the comprehensive characterization of the samples an analytical challenge, particularly in relation to the presence of organic micropollutants (OMPs). Nowadays, the potential of high-resolution mass spectrometry (HRMS) for wide-scope screening in environmental samples is out of question. Considering the physicochemical characteristics of OMPs, the coupling of liquid (LC) and gas chromatography (GC) to HRMS is mandatory.

View Article and Find Full Text PDF

Occupational health is one of the aspects significantly affected during crisis periods. It is essential to learn about the factors that improve organizational capacity in coping with such shocks. This study investigates how the working environment of a family business influences job satisfaction during crises.

View Article and Find Full Text PDF

Oxytetracycline (OTC), enrofloxacin (EFX), and sulfachloropyridazine (SCP) are critically important antimicrobials (AMs) in both human and veterinary medicine, where they are widely used in farm animals. Lettuce has become a matrix of choice for studying the presence of residues of these AMs in plants, as the concentrations of residues detected in lettuce can range from ng to mg. While several analytical methodologies have been developed for the purpose of detecting AMs in lettuce, these currently do not detect both the parent compound and its active metabolites or epimers, such as in the case of ciprofloxacin (CFX) and 4-epi-oxitetracycline (4-epi-OTC), which also pose a risk to public health and the environment due to their AM activity.

View Article and Find Full Text PDF

Developing cost-effective and high-performance thermoelectric (TE) materials to assemble efficient TE devices presents a multitude of challenges and opportunities. CuSbSe is a promising p-type TE material based on relatively earth abundant elements. However, the challenge lies in its poor electrical conductivity.

View Article and Find Full Text PDF
Article Synopsis
  • Lithium-sulfur batteries show promise for high-energy storage but need to address issues with sulfur cathodes and lithium metal anodes for commercial use.
  • The study introduces a LiS cathode made from nanosized lithium sulfide on a CoFeP-CN composite, enhancing performance by improving reaction kinetics and reducing activation barriers.
  • The developed Si/LiS full cells with this innovative cathode demonstrate impressive initial capacities over 900 mA h g and maintain good performance with minimal capacity loss over multiple cycles.
View Article and Find Full Text PDF

A light-triggered fabrication method extends the functionality of printable nanomaterials.

View Article and Find Full Text PDF

Introduction: Epithelial ovarian cancer (EOC) is primarily confined to the peritoneal cavity. When primary complete surgery is not possible, neoadjuvant chemotherapy (NACT) is provided; however, the peritoneum-plasma barrier hinders the drug effect. The intraperitoneal administration of chemotherapy could eliminate residual microscopic peritoneal tumor cells and increase this effect by hyperthermia.

View Article and Find Full Text PDF

In this work, an analytical strategy based on non-target screening of semi-volatile organic compounds and subsequent risk assessment for adult and child populations has been conducted for the first time in household indoor dust samples in Spain. The methodology was based on a microwave-assisted extraction followed by gas chromatography coupled to high resolution mass spectrometry determination, using a hybrid quadrupole-orbitrap analyzer. The procedure was applied to 19 residential indoor dust samples, collected in different Spanish regions (namely Galicia, La Rioja, Catalunya, the Balearic Islands, and the Valencian Region).

View Article and Find Full Text PDF

Low-cost, safe, and environmental-friendly rechargeable aqueous zinc-ion batteries (ZIBs) are promising as next-generation energy storage devices for wearable electronics among other applications. However, sluggish ionic transport kinetics and the unstable electrode structure during ionic insertion/extraction hamper their deployment. Herein, a new cathode material based on a layered metal chalcogenide (LMC), bismuth telluride (Bi Te ), coated with polypyrrole (PPy) is proposed.

View Article and Find Full Text PDF

High entropy alloys (HEAs) are highly suitable candidate catalysts for oxygen evolution and reduction reactions (OER/ORR) as they offer numerous parameters for optimizing the electronic structure and catalytic sites. Herein, FeCoNiMoW HEA nanoparticles are synthesized using a solution-based low-temperature approach. Such FeCoNiMoW nanoparticles show high entropy properties, subtle lattice distortions, and modulated electronic structure, leading to superior OER performance with an overpotential of 233 mV at 10 mA cm and 276 mV at 100 mA cm .

View Article and Find Full Text PDF