Publications by authors named "Maria I Vizcaino"

Background: The sesquiterpenoid abscisic acid (ABA) is mostly known for regulating developmental processes and abiotic stress responses in higher plants. Recent studies show that ABA also exhibits a variety of pharmacological activities. Affordable and sustainable production will be required to utilize the compound in agriculture and as a potential pharmaceutical.

View Article and Find Full Text PDF

The colibactins are hybrid polyketide-nonribosomal peptide natural products produced by certain strains of commensal and extraintestinal pathogenic Escherichia coli. The metabolites are encoded by the clb gene cluster as prodrugs termed precolibactins. clb(+) E.

View Article and Find Full Text PDF

This chapter provides step-by-step methods for building secondary metabolic pathway-targeted molecular networks to assess microbial natural product biosynthesis at a systems level and to aid in downstream natural product discovery efforts. Methods described include high-resolution mass spectrometry (HRMS)-based comparative metabolomics, pathway-targeted tandem MS (MS/MS) molecular networking, and isotopic labeling for the elucidation of natural products encoded by orphan biosynthetic pathways. The metabolomics network workflow covers the following six points: (1) method development, (2) bacterial culture growth and organic extraction, (3) HRMS data acquisition and analysis, (4) pathway-targeted MS/MS data acquisition, (5) mass spectral network building, and (6) network enhancement.

View Article and Find Full Text PDF

Members of the human microbiota are increasingly being correlated to human health and disease states, but the majority of the underlying microbial metabolites that regulate host-microbe interactions remain largely unexplored. Select strains of Escherichia coli present in the human colon have been linked to the initiation of inflammation-induced colorectal cancer through an unknown small-molecule-mediated process. The responsible non-ribosomal peptide-polyketide hybrid pathway encodes 'colibactin', which belongs to a largely uncharacterized family of small molecules.

View Article and Find Full Text PDF

Secondary metabolites produced by nonribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways are chemical mediators of microbial interactions in diverse environments. However, little is known about their distribution, evolution, and functional roles in bacterial symbionts associated with animals. A prominent example is colibactin, a largely unknown family of secondary metabolites produced by Escherichia coli via a hybrid NRPS-PKS biosynthetic pathway that inflicts DNA damage upon eukaryotic cells and contributes to colorectal cancer and tumor formation in the mammalian gut.

View Article and Find Full Text PDF

The gene cluster responsible for synthesis of the unknown molecule "colibactin" has been identified in mutualistic and pathogenic Escherichia coli. The pathway endows its producer with a long-term persistence phenotype in the human bowel, a probiotic activity used in the treatment of ulcerative colitis, and a carcinogenic activity under host inflammatory conditions. To date, functional small molecules from this pathway have not been reported.

View Article and Find Full Text PDF

The integration of chemical ecology and bacterial genome mining can enhance the discovery of structurally diverse natural products in functional contexts. By examining bacterial secondary metabolism in the framework of its ecological niche, insights into the upregulation of orphan biosynthetic pathways and the enhancement of the enzyme substrate supply can be obtained, leading to the discovery of new secondary metabolic pathways that would otherwise be silent or undetected under typical laboratory cultivation conditions. Access to these new natural products (i.

View Article and Find Full Text PDF

Vibrio coralliilyticus is a global marine pathogen that has been found to cause disease in several marine organisms, including corals. This study is the first report of the isolation of V. coralliilyticus from a diseased Caribbean octocoral, Pseudopterogorgia americana.

View Article and Find Full Text PDF
Article Synopsis
  • Coral bleaching happens when the relationship between corals and their beneficial algae is disrupted, either naturally or due to unusual events.
  • The bacterium Vibrio coralliilyticus is associated with coral diseases worldwide and has temperature-dependent effects on its pathogenicity.
  • A study using nuclear magnetic resonance (NMR) revealed that temperature influences specific metabolites in V. coralliilyticus, with betaine decreasing and succinate and glutamate increasing as temperatures rise.
View Article and Find Full Text PDF