Key Points: Kir7.1 K channel expressed in retinal pigment epithelium is mutated in inherited retinal degeneration diseases. We study Kir7.
View Article and Find Full Text PDFLubiprostone, a 20-carbon synthetic fatty acid used for the treatment of constipation, is thought to act through an action on Cl channel ClC-2. Short chain fatty acids (SCFAs) are produced and absorbed in the distal intestine. We explore whether SCFAs affect ClC-2, re-examine a possible direct effect of lubiprostone on ClC-2, and use mice deficient in ClC-2 to stringently address the hypothesis that the epithelial effect of lubiprostone targets this anion channel.
View Article and Find Full Text PDFKir7.1 is an inwardly rectifying K channel present in epithelia where it shares membrane localization with the Na/K-pump. In the present communication we report the presence of a novel splice variant of Kir7.
View Article and Find Full Text PDFKir7.1 encoded by the gene in the mouse is an inwardly rectifying K channel present in epithelia where it shares membrane localization with the Na/K-pump. Further investigations of the localisation and function of Kir7.
View Article and Find Full Text PDFTwo-pore domain K K channels responsible for the background K conductance and the resting membrane potential, are also finely regulated by a variety of chemical, physical and physiological stimuli. Hormones and transmitters acting through Gq protein-coupled receptors (GqPCRs) modulate the activity of various K channels but the signalling involved has remained elusive, in particular whether dynamic regulation by membrane PI(4,5)P, common among other classes of K channels, affects K channels is controversial. Here we show that K K channel TASK-2 requires PI(4,5)P for activity, a dependence that accounts for its run down in the absence of intracellular ATP and its full recovery by addition of exogenous PI(4,5)P, its inhibition by low concentrations of polycation PI scavengers, and inhibition by PI(4,5)P depletion from the membrane.
View Article and Find Full Text PDFK2P K(+) channels with two pore domains in tandem associate as dimers to produce so-called background conductances that are regulated by a variety of stimuli. Whereas gating in K2P channels has been poorly understood, recent developments have provided important clues regarding the gating mechanism for this family of proteins. Two modes of gating present in other K(+) channels have been considered.
View Article and Find Full Text PDFExcitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate.
View Article and Find Full Text PDFK(+) channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K(+) channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios.
View Article and Find Full Text PDFTASK-2 (K2P5) was one of the earliest members of the K2P two-pore, four transmembrane domain K(+) channels to be identified. TASK-2 gating is controlled by changes in both extra- and intracellular pH through separate sensors: arginine 224 and lysine 245, located at the extra- and intracellular ends of transmembrane domain 4. TASK-2 is inhibited by a direct effect of CO2 and is regulated by and interacts with G protein subunits.
View Article and Find Full Text PDFParasitic sea lice represent a major sanitary threat to marine salmonid aquaculture, an industry accounting for 7% of world fish production. Caligus rogercresseyi is the principal sea louse species infesting farmed salmon and trout in the southern hemisphere. Most effective control of Caligus has been obtained with macrocyclic lactones (MLs) ivermectin and emamectin.
View Article and Find Full Text PDFTASK-2 is a K2P K(+) channel considered as a candidate to mediate CO2 sensing in central chemosensory neurons in mouse. Neuroepithelial cells in zebrafish gills sense CO2 levels through an unidentified K2P K(+) channel. We have now obtained zfTASK-2 from zebrafish gill tissue that is 49 % identical to mTASK-2.
View Article and Find Full Text PDFTASK-2 (K2P5.1) is a two-pore domain K(+) channel belonging to the TALK subgroup of the K2P family of proteins. TASK-2 has been shown to be activated by extra- and intracellular alkalinization.
View Article and Find Full Text PDFTASK-2 (K2P5.1) is a background K(+) channel opened by extra- or intracellular alkalinisation that plays a role in renal bicarbonate handling, central chemoreception and cell volume regulation. Here, we present results that suggest that TASK-2 is also modulated by Gβγ subunits of heterotrimeric G protein.
View Article and Find Full Text PDFProton-gated TASK-3 K(+) channel belongs to the K(2P) family of proteins that underlie the K(+) leak setting the membrane potential in all cells. TASK-3 is under cooperative gating control by extracellular [H(+)]. Use of recently solved K(2P) structures allows us to explore the molecular mechanism of TASK-3 cooperative pH gating.
View Article and Find Full Text PDFExcitatory synaptic transmission stimulates brain tissue glycolysis. This phenomenon is the signal detected in FDG-PET imaging and, through enhanced lactate production, is also thought to contribute to the fMRI signal. Using a method based on Förster resonance energy transfer in mouse astrocytes, we have recently observed that a small rise in extracellular K(+) can stimulate glycolysis by >300% within seconds.
View Article and Find Full Text PDFK(+) channels share common selectivity characteristics but exhibit a wide diversity in how they are gated open. Leak K(2P) K(+) channels TASK-2, TALK-1 and TALK-2 are gated open by extracellular alkalinization. The mechanism for this alkalinization-dependent gating has been proposed to be the neutralization of the side chain of a single arginine (lysine in TALK-2) residue near the pore of TASK-2, which occurs with the unusual pK(a) of 8.
View Article and Find Full Text PDFTASK-2 (KCNK5 or K(2P)5.1) is a background K(+) channel that is opened by extracellular alkalinization and plays a role in renal bicarbonate reabsorption and central chemoreception. Here, we demonstrate that in addition to its regulation by extracellular protons (pH(o)) TASK-2 is gated open by intracellular alkalinization.
View Article and Find Full Text PDFClC-2 chloride channel is present in the brain and some transporting epithelia where its function is poorly understood. We have now demonstrated that the surface channels are rapidly internalised and approximately the 70% of the surface membrane protein recycles after 4- to 8-min internalisation. Endocytosis of ClC-2 was dependent upon tyrosine 179 located within an endocytic motif.
View Article and Find Full Text PDFThe ClC transport protein family comprises both Cl(-) ion channel and H(+)/Cl(-) and H(+)/NO(3)(-) exchanger members. Structural studies on a bacterial ClC transporter reveal a pore obstructed at its external opening by a glutamate side-chain which acts as a gate for Cl(-) passage and in addition serves as a staging post for H(+) exchange. This same conserved glutamate acts as a gate to regulate Cl(-) flow in ClC channels.
View Article and Find Full Text PDFPotassium channels share a common selectivity filter that determines the conduction characteristics of the pore. Diversity in K+ channels is given by how they are gated open. TASK-2, TALK-1, and TALK-2 are two-pore region (2P) KCNK K+ channels gated open by extracellular alkalinization.
View Article and Find Full Text PDFMembers of the ClC family of membrane proteins have been found in a variety of species and they can function as Cl- channels or Cl-/H+ antiporters. Three potential ClC genes are present in the Drosophila melanogaster genome. Only one of them shows homology with a branch of the mammalian ClC genes that encode plasma membrane Cl- channels.
View Article and Find Full Text PDFFunctional and structural studies demonstrate that Cl(-) channels of the ClC family have a dimeric double-barrelled structure, with each monomer contributing an identical pore. Studies with ClC-0, the prototype ClC channel, show the presence of independent mechanisms gating the individual pores or both pores simultaneously. A single-point mutation in the CBS-2 domain of ClC-0 has been shown to abolish slow gating.
View Article and Find Full Text PDF