Growth rate is a key prokaryotic trait that allows for estimating fitness and understanding cell metabolism. While it has been well studied in model organisms, there is limited data on slow-growing bacteria. In particular, there is a lack of quantitative studies on Brucella species.
View Article and Find Full Text PDFMembers of the genus Brucella are the causative agents of brucellosis, a worldwide zoonosis affecting wild and domestic animals and humans. These facultative intracellular pathogens cause long-lasting chronic infections by evolving sophisticated strategies to counteract, evade, or subvert host bactericidal mechanisms in order to establish a secure replicative niche necessary for their survival. In this review, we present recent findings on selected Brucella effectors to illustrate how this pathogen modulates host cell signaling pathways to gain control of the vacuole, promote the formation of a safe intracellular replication niche, alter host cell metabolism to its advantage, and exploit various cellular pathways to ensure egress from the infected cell.
View Article and Find Full Text PDFRhomboids are intramembrane serine proteases highly conserved in the three domains of life. Their key roles in eukaryotes are well understood but their contribution to bacterial physiology is still poorly characterized. Here we demonstrate that , the etiological agent of the zoonosis called brucellosis, encodes an active rhomboid protease capable of cleaving model heterologous substrates like Gurken and TatA.
View Article and Find Full Text PDFspp. are Gram negative intracellular bacteria responsible for brucellosis, a worldwide distributed zoonosis. A prominent aspect of the Brucella life cycle is its ability to invade, survive and multiply within host cells.
View Article and Find Full Text PDFl-Serine is a nonessential amino acid and a key intermediate in several relevant metabolic pathways. In bacteria, the major source of l-serine is the phosphorylated pathway, which comprises three enzymes: d-3-phosphoglycerate dehydrogenase (PGDH; SerA), phosphoserine amino transferase (PSAT; SerC), and l-phosphoserine phosphatase (PSP; SerB). The genome encodes two PGDHs (SerA-1 and SerA-2), involved in the first step in l-serine biosynthesis, and one PSAT and one PSP, responsible for the second and third steps, respectively.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2017
, the causative agent of bovine brucellosis, invades and replicates within cells inside a membrane-bound compartment known as the containing vacuole (BCV). After trafficking along the endocytic and secretory pathways, BCVs mature into endoplasmic reticulum-derived compartments permissive for bacterial replication. Type IV Secretion System (VirB) is a major virulence factor essential for the biogenesis of the replicative organelle.
View Article and Find Full Text PDFThe VirB secretion apparatus in Brucella belongs to the type IV secretion systems present in many pathogenic bacteria and is absolutely necessary for the efficient evasion of the Brucella-containing vacuole from the phagocytic route in professional phagocytes. This system is responsible for the secretion of a plethora of effector proteins that alter the biology of the host cell and promote the intracellular replication process. Although many VirB substrates have been identified in Brucella, we still know very little about the secretion mechanism that mediates their translocation across the two membranes and the periplasmic space.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2013
Type IV secretion systems (T4SS) are specialized protein complexes used by many bacterial pathogens for the delivery of effector molecules that subvert varied host cellular processes. Brucella spp. are facultative intracellular pathogens capable of survival and replication inside mammalian cells.
View Article and Find Full Text PDFBrucellosis is a worldwide zoonosis that affects livestock and humans and is caused by closely related Brucella spp., which are adapted to intracellular life within cells of a large variety of mammals. Brucella can be considered a furtive pathogen that infects professional and non-professional phagocytes.
View Article and Find Full Text PDFBrucella is an intracellular pathogen able to persist for long periods of time within the host and establish a chronic disease. We show that soon after Brucella inoculation in intestinal loops, dendritic cells from ileal Peyer's patches become infected and constitute a cell target for this pathogen. In vitro, we found that Brucella replicates within dendritic cells and hinders their functional activation.
View Article and Find Full Text PDFCholoylglycine hydrolase (CGH), a bile salt hydrolase, has been annotated in all the available genomes of Brucella species. We obtained the Brucella CGH in recombinant form and demonstrated in vitro its capacity to cleave glycocholate into glycine and cholate. Brucella abortus 2308 (wild type) and its isogenic Deltacgh deletion mutant exhibited similar growth rates in tryptic soy broth in the absence of bile.
View Article and Find Full Text PDFSecreted as well as surface exposed proteins are assumed to play major roles in bacterial virulence. In this report we describe the construction of an N-terminal protein-capturing system and its use for the isolation of Brucella abortus S2308 genes coding for putative surface exposed or secreted proteins. For this purpose, a cloning vector that generates gene fusions to a ribosome binding site and start codon deficient Chloramphenicol Acetyl Transferase (CAT) reporter gene was constructed and the resulting library introduced into B.
View Article and Find Full Text PDF