Disease is a neurodegenerative disorder characterised by the progressive loss of dopaminergic cells of the substantia nigra pars compacta. Even though successful transplantation of dopamine-producing cells into the striatum exhibits favourable effects in animal models and clinical trials; transplanted cell survival is low. Since every transplant elicits an inflammatory response which can affect cell survival and differentiation, we aimed to study in vivo and in vitro the impact of the pro-inflammatory environment on human dopaminergic precursors.
View Article and Find Full Text PDFIn , several Gal4 drivers are used to direct gene/RNAi expression to different dopaminergic neuronal clusters. We previously developed a fly model of Parkinson's disease, in which dopaminergic neurons had elevated cytosolic Ca due to the expression of a Plasma Membrane Ca ATPase (PMCA) RNAi under the thyroxine hydroxylase (TH)-Gal4 driver. Surprisingly, TH-Gal4>PMCA flies died earlier compared to controls and showed swelling in the abdominal area.
View Article and Find Full Text PDFBackground: Inflammation in the Central Nervous System (CNS) is associated with blood brain barrier (BBB) breakdown during the early stages of Multiple Sclerosis (MS), indicating a facilitated entry of waves of inflammatory cells from the circulation to the CNS. In the progressive forms of MS, as the lesion becomes chronic, the inflammation remains trapped within the CNS compartment forming the slow evolving lesion, characterized by low inflammation and microglia activation at the lesions edges. The chronic expression of interleukin 1β (IL-1β) in the cortex induces BBB breakdown, demyelination, neurodegeneration, microglial/macrophage activation and impaired cognitive performance.
View Article and Find Full Text PDFBackground: Self-limited Childhood Epilepsies are the most prevalent epileptic syndrome in children. Its pathogenesis is unknown. In this disease, symptoms resolve spontaneously in approximately 50% of patients when maturity is reached, prompting to a maturation problem.
View Article and Find Full Text PDFThe accumulation of Ca and its subsequent increase in oxidative stress is proposed to be involved in selective dysfunctionality of dopaminergic neurons, the main cell type affected in Parkinson's disease. To test the in vivo impact of Ca increment in dopaminergic neurons physiology, we downregulated the plasma membrane Ca ATPase (PMCA), a pump that extrudes cytosolic Ca , by expressing PMCA in Drosophila melanogaster dopaminergic neurons. In these animals, we observed major locomotor alterations paralleled to higher cytosolic Ca and increased levels of oxidative stress in mitochondria.
View Article and Find Full Text PDFMultiple Sclerosis (MS) is a neuroinflammatory disease affecting white and grey matter, it is characterized by demyelination, axonal degeneration along with loss of motor, sensitive and cognitive functions. MS is a heterogeneous disease that displays different clinical courses: relapsing/remitting MS (RRMS), and MS progressive forms: primary progressive (PPMS) and secondary progressive (SPMS). Cortical damage in the progressive MS forms has considerable clinical relevance due to its association with cognitive impairment and disability progression in patients.
View Article and Find Full Text PDFThe specific roles of Notch in progressive adulthood neurodegenerative disorders have begun to be unraveled in recent years. A number of independent studies have shown significant increases of Notch expression in brains from patients at later stages of sporadic Alzheimer's disease (AD). However, the impact of Notch canonical signaling activation in the pathophysiology of AD is still elusive.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an inflammatory and demyelinating disease of unknown aetiology that causes neurological disabilities in young adults. MS displays different clinical patterns, including recurrent episodes with remission periods ("relapsing-remitting MS" (RRMS)), which can progress over several years to a secondary progressive form (SPMS). However, 10% of patients display persistent progression at the onset of disease ("primary progressive MS" (PPMS)).
View Article and Find Full Text PDFBlood-brain barrier activation and/or dysfunction are a common feature of human neurobrucellosis, but the underlying pathogenic mechanisms are largely unknown. In this article, we describe an immune mechanism for inflammatory activation of human brain microvascular endothelial cells (HBMEC) in response to infection with Brucella abortus Infection of HBMEC with B. abortus induced the secretion of IL-6, IL-8, and MCP-1, and the upregulation of CD54 (ICAM-1), consistent with a state of activation.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder, whose cardinal pathology is the loss of dopaminergic neurons in the substantia nigra. Current treatments for PD have side effects in the long term and do not halt disease progression or regenerate dopaminergic cell loss. Attempts to compensate neuronal cell loss by transplantation of dopamine-producing cells started more than 30 years ago, leading to several clinical trials.
View Article and Find Full Text PDFTransforming growth factor beta 1 (TGF-beta1), an anti-inflammatory cytokine, has been shown to have pro-neurogenic effects on adult Neural Stem Cells (aNSC) from the dentate gyrus and in vivo models. Here, we expanded the observation of the pro-neurogenic effect of TGF-beta1 on aNSC from the subventricular zone (SVZ) of adult rats and performed a functional genomic analysis to identify candidate genes to mediate its effect. 10 candidate genes were identified by microarray analysis and further validated by qRT-PCR.
View Article and Find Full Text PDFPeripheral circulating cytokines are involved in immune to brain communication and systemic inflammation is considered a risk factor for flaring up the symptoms in most neurodegenerative diseases. We induced both central inflammatory demyelinating lesion, and systemic inflammation with an interleukin-1β expressing adenovector. The peripheral pro-inflammatory stimulus aggravated the ongoing central lesion independently of the blood-brain barrier (BBB) integrity.
View Article and Find Full Text PDFThis study focused on test the null hypothesis that there is no difference between the degree of conversion and biocompatibility of different resin reinforced glass ionomer cements (RRGICs). Forty-eight male Wistar rats were used, distributed into four groups (n = 12), as follows: Group C (Control, polyethylene), Group FOB (Fuji Ortho Band), Group UBL (Ultra band Lok), and Group MCG (Multicure Glass), in subcutaneous tissue. The events of edema, necrosis, granulation tissue, multinuclear giant cells, young fibroblasts, and collagen formation were analyzed at 7, 15, and 30 days.
View Article and Find Full Text PDFThe GH/IGF-I axis has essential roles in regulating bone and vascular status. The age-related decrease in GH secretion ("somatopause") may contribute to osteoporosis and atherosclerosis, commonly observed in the elderly. Adult-onset GH deficiency (GHD) has been reported to be associated with reduced bone mineral density (BMD), increased risk of fractures, and premature atherosclerosis.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
November 2013
Context: The GH/IGF-I axis is important for bone growth, but its effects on joint function are not completely understood. Adult-onset GH-deficient individuals have often reduced bone mineral density (BMD). However, there are limited data on BMD in adult patients with untreated congenital isolated GH-deficient (IGHD).
View Article and Find Full Text PDFContext: GH reduces insulin sensitivity (IS), whereas IGF-I increases it. IGF-I seems to be critical for the development of the β-cells, and impaired IS has been reported in GH deficiency (GHD).
Objective: The aim of the study was to assess IS and β-cell function in adult patients with untreated isolated GHD (IGHD) due to a homozygous mutation in the GHRH receptor gene.