Background: Knee osteoarthritis (OA) is the most prevalent degenerative musculoskeletal disorder, which is particularly common in older population. While conventional treatments have limited effectiveness, the development of more effective therapeutic strategies is necessary to address this primary source of pain and disability. Umbilical cord mesenchymal stromal cells (UC-MSCs) offer a promising therapeutic approach for treating knee OA.
View Article and Find Full Text PDFAnthropogenic impact has transitioned from threatening already rare species to causing significant declines in once numerous organisms. Long-tailed duck () and velvet scoter () were once important quarry sea duck species in NW Europe, but recent declines resulted in their reclassification as vulnerable on the IUCN Red List. We sequenced and assembled genomes for both species and resequenced 15 individuals of each.
View Article and Find Full Text PDFOsteoarthritis (OA) is the most common degenerative joint disease. Mesenchymal stromal cells (MSC) are promising cell-based therapy for OA. However, there is still a need for additional randomized, dose-dependent studies to determine the optimal dose and tissue source of MSC for improved clinical outcomes.
View Article and Find Full Text PDFTreatment for critical care conditions, such as acute respiratory distress syndrome (ARDS), requires ready-to-administer injectable mesenchymal stromal cells (MSCs). A validated cryopreserved therapy based on MSCs derived from menstrual blood (MenSCs) is an attractive option that offers advantages over freshly cultured cells and allows its use as an off-the-shelf therapy in acute clinical conditions. The main goal of this study is to provide evidence on the impact of cryopreservation on different biological functions of MenSCs and to determine the optimal therapeutic dose, safety, and efficacy profile of clinical-grade, cryopreserved (cryo)-MenSCs in experimental ARDS.
View Article and Find Full Text PDFPatagonia is an understudied area, especially when it comes to population genomic studies with relevance to fishery management. However, the dynamic and heterogeneous landscape in this area can harbor an important but cryptic genetic population structure. Once such information is revealed, it can be integrated into the management of infrequently investigated species.
View Article and Find Full Text PDFDomestication processes and artificial selection are likely to leave signatures that can be detected at a molecular level in farmed rainbow trout (Oncorhynchus mykiss). These signatures of selection are genomic regions that contain functional genetic variants conferring a higher fitness to their bearers. We genotyped 749 rainbow trout from a commercial population using a rainbow trout Axiom 57 K SNP array panel and identified putative genomic regions under selection using the pcadapt, Composite Likelihood Ratio (CLR) and Integrated Haplotype Score (iHS) methods.
View Article and Find Full Text PDFNile tilapia belongs to the second most cultivated group of fish in the world, mainly because of its favorable characteristics for production. Genetic improvement programs and domestication process of Nile tilapia may have modified the genome through selective pressure, leaving signals that can be detected at the molecular level. In this work, signatures of selection were identified using genome-wide SNP data, by two haplotype-based (iHS and Rsb) and one F based method.
View Article and Find Full Text PDFNile tilapia (Oreochromis niloticus) is the second most important farmed fish in the world and a sustainable source of protein for human consumption. Several genetic improvement programs have been established for this species in the world. Currently, the estimation of genetic merit of breeders is typically based on genealogical and phenotypic information.
View Article and Find Full Text PDFNile tilapia () is one of the most produced farmed fish in the world and represents an important source of protein for human consumption. Farmed Nile tilapia populations are increasingly based on genetically improved stocks, which have been established from admixed populations. To date, there is scarce information about the population genomics of farmed Nile tilapia, assessed by dense single nucleotide polymorphism (SNP) panels.
View Article and Find Full Text PDFNile tilapia () is one of the most cultivated and economically important species in world aquaculture. Intensive production promotes the use of monosex animals, due to an important dimorphism that favors male growth. Currently, the main mechanism to obtain all-male populations is the use of hormones in feeding during larval and fry phases.
View Article and Find Full Text PDFKnee osteoarthritis (OA) is a leading cause of pain and disability. Although conventional treatments show modest benefits, pilot and phase I/II trials with bone marrow (BM) and adipose-derived (AD) mesenchymal stromal cells (MSCs) point to the feasibility, safety, and occurrence of clinical and structural improvement in focal or diffuse disease. This study aimed to assess the safety and efficacy of the intra-articular injection of single or repeated umbilical cord-derived (UC) MSCs in knee OA.
View Article and Find Full Text PDFDifferent pathways of propagation and dispersal of non-native species into new environments may have contrasting demographic and genetic impacts on established populations. Repeated introductions of rainbow trout () to Chile in South America, initially through stocking and later through aquaculture escapes, provide a unique setting to contrast these two pathways. Using a panel of single nucleotide polymorphisms, we found contrasting genetic metrics and patterns among naturalized trout in Lake Llanquihue, Chile's largest producer of salmonid smolts for nearly 50 years, and Lake Todos Los Santos (TLS), a reference lake where aquaculture has been prohibited by law.
View Article and Find Full Text PDFKnowledge about the genetic underpinnings of invasions-a theme addressed by invasion genetics as a discipline-is still scarce amid well documented ecological impacts of non-native species on ecosystems of Patagonia in South America. One of the most invasive species in Patagonia's freshwater systems and elsewhere is rainbow trout (Oncorhynchus mykiss). This species was introduced to Chile during the early twentieth century for stocking and promoting recreational fishing; during the late twentieth century was reintroduced for farming purposes and is now naturalized.
View Article and Find Full Text PDF