Proc Natl Acad Sci U S A
December 2017
Phosphorylation is a major regulator of protein interactions; however, the mechanisms by which regulation occurs are not well understood. Here we identify a salt-bridge competition or "theft" mechanism that enables a phospho-triggered swap of protein partners by Raf Kinase Inhibitory Protein (RKIP). RKIP transitions from inhibiting Raf-1 to inhibiting G-protein-coupled receptor kinase 2 upon phosphorylation, thereby bridging MAP kinase and G-Protein-Coupled Receptor signaling.
View Article and Find Full Text PDFThere is growing awareness of the link between drug-target residence time and in vivo drug activity, and there are increasing efforts to determine the molecular factors that control the lifetime of a drug-target complex. Rational alterations in the drug-target residence time require knowledge of both the ground and transition states on the inhibition reaction coordinate, and we have determined the structure-kinetic relationship for 22 ethyl- or hexyl-substituted diphenyl ethers that are slow-binding inhibitors of bpFabI1, the enoyl-ACP reductase FabI1 from Burkholderia pseudomallei. Analysis of enzyme inhibition using a two-dimensional kinetic map demonstrates that the ethyl and hexyl diphenyl ethers fall into two distinct clusters.
View Article and Find Full Text PDFThe enoyl-ACP reductase (ENR) catalyzes the last reaction in the elongation cycle of the bacterial type II fatty acid biosynthesis (FAS-II) pathway. While the FabI ENR is a well-validated drug target in organisms such as Mycobacterium tuberculosis and Staphylococcus aureus, alternate ENR isoforms have been discovered in other pathogens, including the FabV enzyme that is the sole ENR in Yersinia pestis (ypFabV). Previously, we showed that the prototypical ENR inhibitor triclosan was a poor inhibitor of ypFabV and that inhibitors based on the 2-pyridone scaffold were more potent [Hirschbeck, M.
View Article and Find Full Text PDFDetermining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health.
View Article and Find Full Text PDFThe recently discovered FabV enoyl-ACP reductase, which catalyzes the last step of the bacterial fatty acid biosynthesis (FAS-II) pathway, is a promising but unexploited drug target against the reemerging pathogen Yersinia pestis. The structure of Y. pestis FabV in complex with its cofactor reveals that the enzyme features the common architecture of the short-chain dehydrogenase reductase superfamily, but contains additional structural elements that are mostly folded around the usually flexible substrate-binding loop, thereby stabilizing it in a very tight conformation that seals the active site.
View Article and Find Full Text PDF