Organoids retain the morphological and molecular patterns of their tissue of origin, are self-organizing, relatively simple to handle and accessible to genetic engineering. Thus, they represent an optimal tool for studying the mechanisms of tissue maintenance and aging. Long-term expansion under standard growth conditions, however, is accompanied by changes in the growth pattern and kinetics.
View Article and Find Full Text PDFAberrant DNA methylation in stem cells is a hallmark of aging and tumor development. Recently, we have suggested that promoter DNA hyper-methylation originates in DNA repair and that even successful DNA repair might confer this kind of epigenetic long-term change. Here, we ask for interrelations between promoter DNA methylation and histone modification changes observed in the intestine weeks after irradiation and/or following loss.
View Article and Find Full Text PDFBackground: Mismatch repair (MMR)-deficiency increases the risk of colorectal tumorigenesis. To determine whether the tumors develop on a normal or disturbed epigenetic background and how radiation affects this, we quantified genome-wide histone H3 methylation profiles in macroscopic normal intestinal tissue of young radiated and untreated MMR-deficient VCMsh2 (Msh2) mice months before tumor onset.
Results: Histone H3 methylation increases in Msh2 compared to control Msh2 mice.
BMC Cardiovasc Disord
April 2018
Aberrant DNA methylation in stem cells is a hallmark of aging and tumor development. Here, we explore whether and how DNA damage repair might impact on these time-dependent changes, in particular in proliferative intestinal stem cells. We introduce a 3D multiscale computer model of intestinal crypts enabling simulation of aberrant DNA and histone methylation of gene promoters during aging.
View Article and Find Full Text PDFIntestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture.
View Article and Find Full Text PDFColorectal cancer (CRC) arising in Lynch syndrome (LS) comprises tumours with constitutional mutations in DNA mismatch repair genes. There is still a lack of whole-genome and transcriptome studies of LS-CRC to address questions about similarities and differences in mutation and gene expression characteristics between LS-CRC and sporadic CRC, about the molecular heterogeneity of LS-CRC, and about specific mechanisms of LS-CRC genesis linked to dysfunctional mismatch repair in LS colonic mucosa and the possible role of immune editing. Here, we provide a first molecular characterization of LS tumours and of matched tumour-distant reference colonic mucosa based on whole-genome DNA-sequencing and RNA-sequencing analyses.
View Article and Find Full Text PDFBivalent genes are frequently associated with developmental and lineage specification processes. Resolving their bivalency enables fast changes in their expression, which potentially can trigger cell fate decisions. Here, we provide a theoretical model of bivalency that allows for predictions on the occurrence, stability and regulatory capacity of this prominent modification state.
View Article and Find Full Text PDFPluripotent mouse embryonic stem cells (mESCs) show heterogeneous expression levels of transcription factors (TFs) involved in pluripotency regulation, among them Nanog and Rex1. The expression of both TFs can change dynamically between states of high and low activity, correlating with the cells' capacity for self-renewal. Stochastic fluctuations as well as sustained oscillations in gene expression are possible mechanisms to explain this behaviour, but the lack of suitable data hampered their clear distinction.
View Article and Find Full Text PDFThe maintenance of pluripotency in embryonic stem cells (ESCs), its loss during lineage specification or its re-induction to generate induced pluripotent stem cells are central topics in stem cell biology. To uncover the molecular basis and the design principles of pluripotency control, a multitude of experimental, but also an increasing number of computational, studies have been published. Here, we consider recent reports that apply computational or mathematical modelling approaches to describe the regulatory processes that underlie cell fate decisions in mouse ESCs.
View Article and Find Full Text PDFPluripotent embryonic stem cells (ESCs) have the potential to differentiate into cells of all three germ layers. This unique property has been extensively studied on the intracellular, transcriptional level. However, ESCs typically form clusters of cells with distinct size and shape, and establish spatial structures that are vital for the maintenance of pluripotency.
View Article and Find Full Text PDFMouse embryonic stem cells (mESCs) can be maintained in a proliferative and undifferentiated state over many passages (self-renewal) while retaining the potential to give rise to every cell type of the organism (pluripotency). Autocrine FGF4/Erk signalling has been identified as a major stimulus for fate decisions and lineage commitment in these cells. Recent findings on serum-free culture conditions with specific inhibitors (known as 2i) demonstrate that the inhibition of this pathway reduces transcription factor heterogeneity and is vital to maintain ground state pluripotency of mESCs.
View Article and Find Full Text PDFBackground: Measurements of plasma normetanephrine and metanephrine provide a useful diagnostic test for phaeochromocytoma, but this depends on appropriate reference intervals. Upper cut-offs set too high compromise diagnostic sensitivity, whereas set too low, false-positives are a problem. This study aimed to establish optimal reference intervals for plasma normetanephrine and metanephrine.
View Article and Find Full Text PDFThe expression of the transcription factors Oct4, Sox2, and Nanog is commonly associated with pluripotency of mouse embryonic stem (ES) cells. However, recent observations suggest that ES cell populations are heterogeneous with respect to the expression of Nanog and that individual ES cells reversibly change their Nanog expression level. Furthermore, it has been shown that cells exhibiting a low Nanog level are more likely to undergo differentiation.
View Article and Find Full Text PDFPreviously, we have modeled hematopoietic stem cell organization by a stochastic, single cell-based approach. Applications to different experimental systems demonstrated that this model consistently explains a broad variety of in vivo and in vitro data. A major advantage of the agent-based model (ABM) is the representation of heterogeneity within the hematopoietic stem cell population.
View Article and Find Full Text PDF