Publications by authors named "Maria Hankewych"

The silencing of tumor suppressor genes associated with increased DNA methylation of the promoter regions is a frequent observation in many forms of cancer. Reactivation of these genes using pharmacological inhibitors of DNA methyltransferase such as 5-aza-2'-deoxycytidine (decitabine) is a worthwhile therapeutic goal. The effectiveness and tolerability of low-dose intravenous and subcutaneous decitabine regimens to demethylate and reactivate expression of the methylated gamma-globin gene in baboons and in patients with sickle cell disease led to successful trials of low-dose regimens of this drug in patients with myelodysplastic syndrome.

View Article and Find Full Text PDF

Objective: To determine whether the difference in gamma-globin gene promoter methylation in terminal erythroblasts at the fetal and adult stages of development is a result of fetal stage-specific demethylation or adult stage-specific de novo methylation during erythropoiesis.

Materials And Methods: Fetal liver- (FL, n = 2) and adult bone marrow- (ABM, n = 3) derived hematopoietic stem/progenitor cells and mature erythroblasts were purified by passage through a Miltenyi Magnetic Column followed by fluorescein-activated cell sorting (FACS) into subpopulations, defined by expression of CD34 and CD36 antigens. CD34(+)CD36(-), CD34(+)CD36(+), and CD34(-)CD36(+) subpopulations were purified by FACS and their degree of differentiation verified using the colony-forming cell assay.

View Article and Find Full Text PDF

Objective: Treatment with the DNA demethylating drug 5-aza-2'-deoxycytidine (Dacogen; DAC) increased fetal hemoglobin and F cells to therapeutically significant levels in patients with sickle cell disease. To gain more insight into the mechanism of action of this drug and to increase our understanding of the relationship between DNA methylation and chromatin structure, we have determined the effect of DAC on covalent histone modifications of chromatin associated with the epsilon, gamma-, and beta-globin promoters in purified bone marrow erythroid cells of four baboons (P. anubis) pre- and posttreatment.

View Article and Find Full Text PDF

The baboon is a suitable and relevant animal model to study the mechanism of human globin gene switching. This investigation addresses the role of DNA methylation and histone coding in globin gene switching in the baboon, Papio anubis. Bisulfite sequencing and chromatin immunoprecipitation studies were performed in erythroid cells purified from fetuses of varying gestational ages and from adult bone marrow to analyze the manner that changes in DNA methylation of the epsilon-, gamma-, and beta-globin promoters and association of ac-H3, ac-H4, H3-dimeK4, H3-dimeK36, and H3-dimeK79 with the epsilon-, gamma-, and beta-globin promoters occur during development.

View Article and Find Full Text PDF

Methylation of the p16 (INK4a) tumor suppressor gene is observed frequently in multiple myeloma and various forms of lymphoma and mediates silencing of p16 gene expression. In this investigation, we have determined the effect of the DNA demethylating drug decitabine (DAC; 5-aza-2'-deoxycytidine) on the growth, cell cycle kinetics, RB phosphorylation, and expression of p16 (INK4a) and p21(WAF1) in EBV- human myeloma and EBV+ lymphoblastic cell lines possessing silenced, methylated p16 (INK4a) genes to: (1). evaluate its potential as a therapeutic agent and (2).

View Article and Find Full Text PDF