In graph theory, "multilayer networks" represent systems involving several interconnected topological levels. One example in neuroscience is the stratification of connections between different cortical depths or "laminae", which is becoming non-invasively accessible in humans using ultra-high-resolution functional MRI (fMRI). Here, we applied multilayer graph theory to examine functional connectivity across different cortical depths in humans, using 7T fMRI (1-mm voxels; 30 participants).
View Article and Find Full Text PDFProprioception is the sense of body position and movement that relies on afference from the proprioceptors in muscles and joints. Proprioceptive responses in the primary sensorimotor (SM1) cortex can be elicited by stimulating the proprioceptors using evoked (passive) limb movements. In magnetoencephalography (MEG), proprioceptive processing can be quantified by recording the movement evoked fields (MEFs) and movement-induced beta power modulations or by computing corticokinematic coherence (CKC) between the limb kinematics and cortical activity.
View Article and Find Full Text PDFCorticokinematic coherence (CKC) quantifies the phase coupling between limb kinematics and cortical neurophysiological signals reflecting proprioceptive feedback to the primary sensorimotor (SM1) cortex. We studied whether the CKC strength or cortical source location differs between proprioceptive stimulation (i.e.
View Article and Find Full Text PDFPerception of the same narrative can vary between individuals depending on a listener's previous experiences. We studied whether and how cultural family background may shape the processing of an audiobook in the human brain. During functional magnetic resonance imaging (fMRI), 48 healthy volunteers from two different cultural family backgrounds listened to an audiobook depicting the intercultural social life of young adults with the respective cultural backgrounds.
View Article and Find Full Text PDFMovement-evoked fields to passive movements and corticokinematic coherence between limb kinematics and magnetoencephalographic signals can both be used to quantify the degree of cortical processing of proprioceptive afference. We examined in 20 young healthy volunteers whether processing of proprioceptive afference in the primary sensorimotor cortex is modulated by attention directed to the proprioceptive stimulation of the right index finger using a pneumatic-movement actuator to evoke continuous 3-Hz movement for 12 min. The participant attended either to a visual (detected change of fixation cross colour) or movement (detected missing movements) events.
View Article and Find Full Text PDFSoc Cogn Affect Neurosci
January 2021
The recent decade has seen a shift from artificial and environmentally deprived experiments in neuroscience to real-life studies on multiple brains in interaction, coordination and synchrony. In these new interpersonal synchrony experiments, there has been a growing trend to employ naturalistic social interactions to evaluate mechanisms underlying synchronous neuronal communication. Here, we emphasize the importance of integrating the assessment of neural synchrony with measurement of nonverbal behavioral synchrony as expressed in various social contexts: relaxed social interactions, planning a joint pleasurable activity, conflict discussion, invocation of trauma, or support giving and assess the integration of neural and behavioral synchrony across developmental stages and psychopathological conditions.
View Article and Find Full Text PDFIntroduction: We examined which brain areas are involved in the comprehension of acoustically distorted speech using an experimental paradigm where the same distorted sentence can be perceived at different levels of intelligibility. This change in intelligibility occurs via a single intervening presentation of the intact version of the sentence, and the effect lasts at least on the order of minutes. Since the acoustic structure of the distorted stimulus is kept fixed and only intelligibility is varied, this allows one to study brain activity related to speech comprehension specifically.
View Article and Find Full Text PDFRecent studies have shown that acoustically distorted sentences can be perceived as either unintelligible or intelligible depending on whether one has previously been exposed to the undistorted, intelligible versions of the sentences. This allows studying processes specifically related to speech intelligibility since any change between the responses to the distorted stimuli before and after the presentation of their undistorted counterparts cannot be attributed to acoustic variability but, rather, to the successful mapping of sensory information onto memory representations. To estimate how the complexity of the message is reflected in speech comprehension, we applied this rapid change in perception to behavioral and magnetoencephalography (MEG) experiments using vowels, words and sentences.
View Article and Find Full Text PDF