Consumers are increasingly concerned about cosmetic ingredients' origin, looking more than ever to sustainable and greener formulations. The Natural Park of Montesinho, located in Portugal, is characterized by an enormous fauna and flora diversity. Among them, beeswax and strawberry trees () have attracted the cosmetic researchers' interest due to their bioactive compounds' richness, particularly fatty acids and phenolic compounds.
View Article and Find Full Text PDFNanomedicine, an area that uses nanomaterials for theragnostic purposes, is advancing rapidly, particularly in the detection and treatment of neurodegenerative diseases. The design of nanocarriers can be optimized to enhance drug bioavailability and targeting to specific organs, improving therapeutic outcomes. However, clinical translation hinges on biocompatibility and safety.
View Article and Find Full Text PDFNanostructured lipid carriers (NLCs) have the potential to increase the bioavailability and reduce the side effects of docetaxel (DTX). However, only a small fraction of nanoparticles given intravenously can reach a solid tumor. In situ-forming gels combined with nanoparticles facilitate local administration and promote drug retention at the tumor site.
View Article and Find Full Text PDFThe specific interaction between cell surface receptors and corresponding antibodies has driven opportunities for developing targeted cancer therapies using nanoparticle systems. It is challenging to design and develop such targeted nanomedicines using antibody ligands, as the final nanoconjugate's specificity hinges on the cohesive functioning of its components. The multicomponent nature of antibody-conjugated nanoparticles also complicates the characterization process.
View Article and Find Full Text PDFProteins and peptides are potential therapeutic agents, but their physiochemical properties make their use as drug substances challenging. Hydrogels are hydrophilic polymeric networks that can swell and retain high amounts of water or biological fluids without being dissolved. Due to their biocompatibility, their porous structure, which enables the transport of various peptides and proteins, and their protective effect against degradation, hydrogels have gained prominence as ideal carriers for these molecules' delivery.
View Article and Find Full Text PDFThe widespread push to invest in local cancer therapies comes from the need to overcome the limitations of systemic treatment options. In contrast to intravenous administration, local treatments using intratumoral or peritumoral injections are independent of tumor vasculature and allow high concentrations of therapeutic agents to reach the tumor site with minimal systemic toxicity. Injectable biodegradable hydrogels offer a clear advantage over other delivery systems because the former requires no surgical procedures and promotes drug retention at the tumor site.
View Article and Find Full Text PDFHydrogels based on stimuli-responsive polymers can change their characteristics in response to small variations in environmental conditions, such as temperature, pH, and ionic strength, among others. In the case of some routes of administration, such as ophthalmic and parenteral, the formulations must meet specific requirements, namely sterility. Therefore, it is essential to study the effect of the sterilization method on the integrity of smart gel systems.
View Article and Find Full Text PDFNanotechnology takes the lead in providing new therapeutic options for cancer patients. In the last decades, lipid-based nanoparticles-solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), liposomes, and lipid-polymer hybrid nanoparticles-have received particular interest in anticancer drug delivery to solid tumors. To improve selectivity for target cells and, thus, therapeutic efficacy, lipid nanoparticles have been functionalized with antibodies that bind to receptors overexpressed in angiogenic endothelial cells or cancer cells.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) restricts the access of therapeutic agents to the brain, complicating the treatment of neurological diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), glioma, etc. To overcome this limitation and improve drug delivery to the central nervous system (CNS), the potential of nanocarriers, including lipid-based nanosystems, has been explored. Through active targeting, the surface of the nanocarriers can be modified with ligands that interact with the BBB, enhancing their uptake and penetration across the brain endothelium by different physiological mechanisms, such as receptor- or transporter-mediated transcytosis.
View Article and Find Full Text PDFThe skin is the largest organ of the human body and has several functions such as barrier against external agents, the maintenance of temperature and homeostatic functions. Skin ageing is a natural process that can be influenced by environmental factors, intrinsic skin factors and lifestyle. UV light plays an important role in skin ageing and can cause spots, requiring the use of depigmenting agents.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a very poor prognosis. Its treatment is hindered by a lack of new therapeutic alternatives and the existence of the blood-brain barrier (BBB), which restricts the access of drugs commonly used in ALS, such as riluzole, to the brain. To overcome these limitations and increase brain targeting, riluzole-loaded nanostructured lipid carriers (NLC) were prepared and functionalized with lactoferrin (Lf), facilitating transport across the BBB by interacting with Lf receptors expressed in the brain endothelium.
View Article and Find Full Text PDFThe ability of some hydrogels to exhibit a phase transition or change their structure in response to stimuli has been extensively explored for drug depot formation and controlled drug release. Taking advantage of the unique features of the tumor microenvironment (TME) or externally applied triggers, several injectable stimuli-responsive hydrogels have been described as promising candidates for intratumoral drug delivery. In this review, we provide a brief overview of the TME and highlight the advantages of intratumoral administration, followed by a summary of the reported strategies to endow hydrogels with responsiveness to physical (temperature and light), chemical (pH and redox potential), or biological (enzyme) stimuli.
View Article and Find Full Text PDFThis study aims to design and characterize Nanostructured lipid carriers (NLC) and Nanostructured lipid carrier-based hydrogels with Passiflora edulis seeds oil, a by-product from Madeira Island food industry. NLC were prepared by the ultrasonication technique, using passion fruit seeds oil as a liquid lipid and glyceryl distearate as a solid lipid. These NLC were then gelled with Poly (acrylic acid).
View Article and Find Full Text PDFNeurodegenerative diseases (NDs) bear a lot of weight in public health. By studying the properties of the blood-brain barrier (BBB) and its fundamental interactions with the central nervous system (CNS), it is possible to improve the understanding of the pathological mechanisms behind these disorders and create new and better strategies to improve bioavailability and therapeutic efficiency, such as nanocarriers. Microfluidics is an intersectional field with many applications.
View Article and Find Full Text PDFRecently, studies on the by-products from the food industry, such as passion fruit seeds, have significantly increased, as these can have an added value, due to their properties, such as potential antioxidant activity. This study was conducted to determine the presence of piceatannol and resveratrol in various extracts of passion fruit () seeds from Madeira Island and a commercial passion fruit oil was used as reference. The commercial oil and the extracts that were obtained by traditional Soxhlet method with ethanol and acetone did not reveal the presence of the two stilbenes, piceatannol and resveratrol.
View Article and Find Full Text PDFA novel quasi-dry electrode prototype, based on a polymer wick structure filled with a specially designed hydrating solution is proposed for electroencephalography (EEG) applications. The new electrode does not require the use of a conventional electrolyte paste to achieve a wet, low-impedance scalp contact. When compared to standard commercial Ag/AgCl sensors, the proposed wick electrodes exhibit similar electrochemical noise and potential drift values.
View Article and Find Full Text PDFContext: Nanostructured lipid carrier (NLC) dispersions present low viscosity and poor mucoadhesive properties, which reduce the pre-corneal residence time and consequently, the bioavailability of ocular drugs.
Objective: The aim of this study was to prepare thermoresponsive eyedrops based on the combination of lipid nanoparticles and a thermoresponsive polymer with mucomimetic properties (Pluronic® F-127).
Materials And Methods: NLC dispersions were prepared based on the melt-emulsification and ultrasonication technique.
Background: The EEG technique has decades of valid applications in clinical and experimental neurophysiology. EEG equipment and data analysis methods have been characterized by remarkable developments, but the skin-to-electrode signal transfer remains a challenge for EEG recording.
New Method: A novel quasi-dry system - the polymer wick-based electrode - was developed to overcome the limitations of conventional dry and wet silver/silver-chloride (Ag/AgCl) electrodes for EEG recording.
The low bioavailability and consequently the poor therapeutic response of traditional ophthalmic formulations is caused by reduced pre-corneal residence time of the formulation in contact with the ocular surface. The use of colloidal carrier systems, namely lipid nanoparticles in combination with in situ gelling polymers, is an excellent strategy which results in the exponential increase of the bioavailability of ophthalmic drugs. In the present study, we have developed thermoresponsive eyedrops prepared with nanostructured lipid carriers (NLC) dispersions for the controlled delivery of ibuprofen.
View Article and Find Full Text PDFThe majority of pharmaceutical formulations for the treatment of ocular pathologies are for topical administration. However, this kind of ophthalmic formulations has disadvantages such as low bioavailability and, consequently, a reduced therapeutic effect. This happens due to the anatomical and physiological specificity of the eyeball (tissues with different characteristics, the presence of different defense mechanisms, etc.
View Article and Find Full Text PDFBiopharmaceuticals are a generation of drugs that include peptides, proteins, nucleic acids and cell products. According to their particular molecular characteristics (e.g.
View Article and Find Full Text PDFCurr Pharm Biotechnol
March 2016
Pharmaceutical biotechnology has been showing therapeutic success never achieved with conventional drug molecules. Therefore, biopharmaceutical products are currently well-established in clinic and the development of new ones is expected. These products comprise mainly therapeutic proteins, although nucleic acids and cells are also included.
View Article and Find Full Text PDF