Publications by authors named "Maria Guttinger"

In 2002 we published an article describing a population of vessel-associated progenitors that we termed mesoangioblasts (MABs). During the past decade evidence had accumulated that during muscle development and regeneration things may be more complex than a simple sequence of binary choices (e.g.

View Article and Find Full Text PDF

Background: Thymus organogenesis and T lymphocyte development are accomplished together during fetal life. Proper development and maintenance of thymus architecture depend on signals generated by a sustained crosstalk between developing thymocytes and stromal elements. Any maturation impairment occurring in either cellular component leads to an aberrant thymic development.

View Article and Find Full Text PDF

Epithelial V-like antigen (EVA) is an immunoglobulin-like adhesion molecule identified in a screen for molecules developmentally regulated at the DN to DP progression in thymocyte development. We show that EVA is expressed during the early stages of thymus organogenesis in both fetal thymic epithelia and T cell precursors, and is progressively downregulated from day 16.5 of embryonic development.

View Article and Find Full Text PDF

Duchenne muscular dystrophy remains an untreatable genetic disease that severely limits motility and life expectancy in affected children. The only animal model specifically reproducing the alterations in the dystrophin gene and the full spectrum of human pathology is the golden retriever dog model. Affected animals present a single mutation in intron 6, resulting in complete absence of the dystrophin protein, and early and severe muscle degeneration with nearly complete loss of motility and walking ability.

View Article and Find Full Text PDF

Cell therapy for muscular dystrophy involves transplantation of either genetically modified autologous cells or normal donor cells that will be rejected unless the host is adequately immune suppressed. The extent of the immune response appears to be mitigated in this case of stem cells, by immune-suppressive and tolerogenic molecules that they release. We previously reported significant morphological and functional amelioration of a mouse model of limb-girdle muscular dystrophy by transplantation of mesoangioblasts.

View Article and Find Full Text PDF