Background: Extracting phenotype-representative flow patterns and their associated numerical metrics is a bottleneck in the clinical translation of advanced cardiac flow imaging modalities. We hypothesized that reduced-order models (ROMs) are a suitable strategy for deriving simple and interpretable clinical metrics of intraventricular flow suitable for further assessments. Combined with machine learning (ML) flow-based ROMs could provide new insight to help diagnose and risk-stratify patients.
View Article and Find Full Text PDFBackground: Extracting explainable flow metrics is a bottleneck to the clinical translation of advanced cardiac flow imaging modalities. We hypothesized that reduced-order models (ROMs) of intraventricular flow are a suitable strategy for deriving simple and interpretable clinical metrics suitable for further assessments. Combined with machine learning (ML) flow-based ROMs could provide new insight to help diagnose and risk-stratify patients.
View Article and Find Full Text PDFIn the healthy heart, left ventricular (LV) filling generates different flow patterns which have been proposed to optimize blood transport by coupling diastole and systole. This work presents a novel image-based method to assess how different flow patterns influence LV blood transport in patients undergoing cardiac resynchronization therapy (CRT). Our approach is based on solving the advection equation for a passive scalar field from time-resolved blood velocity fields.
View Article and Find Full Text PDFIn patients at risk of intraventrcular thrombosis, the benefits of chronic anticoagulation therapy need to be balanced with the pro-hemorrhagic effects of therapy. Blood stasis in the cardiac chambers is a recognized risk factor for intracardiac thrombosis and potential cardiogenic embolic events. In this work, we present a novel flow image-based method to assess the location and extent of intraventricular stasis regions inside the left ventricle (LV) by digital processing flow-velocity images obtained either by phase-contrast magnetic resonance (PCMR) or 2D color-Doppler velocimetry (echo-CDV).
View Article and Find Full Text PDF