High-value metabolites, such as enzymes and biofuels, can be produced from various agro-industrial waste containing high percentages of cellulose and hemicellulose. ITV02 demonstrates high potential in cellulases production, the key enzyme for converting lignocellulosic materials into fermentable sugars to produce second-generation bioethanol (bioethanol 2G). This study evaluated five lignocellulosic residues of agricultural importance: sugarcane bagasse (SCB), sorghum bagasse (SB), corn stubble (CS), barley straw (BS) and rice husk (RH) as substrates for cellulase production.
View Article and Find Full Text PDFThe production of second-generation bioethanol has several challenges, among them finding cheap and efficient enzymes for a sustainable process. In this work, we analyzed two native fungi, and , as a source of cellulolytic enzyme production, and corn stover, wheat bran, chickpeas, and bean straw as a carbon source in two fermentation systems: submerged and solid fermentation. Corn stover was selected for cellulase production in both fermentation systems, because we found the highest enzymatic activities when carboxymethyl cellulase activity (CMCase) was assessed using CMC as substrate.
View Article and Find Full Text PDFBiochemical and kinetic properties are of special interest for the specific applications of α-amylases in industrial sectors such as textile industries, detergents, biofuels and food among others. Therefore, protein engineering is currently directed towards a continuous demand to improve the properties of amylases and thus meet the specific characteristics for various industrial sectors. In the present work, modular protein engineering was performed to improve the biochemical and kinetic properties of AmyJ33r an α-amylase isolated from Bacillus siamensis JJC33M consisting of five domains, A, B, C, D and E (SBD) (Montor-Antonio et al.
View Article and Find Full Text PDFBiorefinery with deep eutectic solvent (DES) is an emerging processing technology to overcome the shortcomings of conventional biomass pretreatments. This work evaluates the biorefinery of sugarcane bagasse (SCB) with DES formulated with choline chloride as hydrogen bond acceptor and three hydrogen bond donors: lactic acid, citric acid, and acetic acid. Acetic acid showed unique ionic properties responsible for the selective removal of lignin and the deconstruction of cellulose to improve the digestibility of up to 97.
View Article and Find Full Text PDFBiotechnol Appl Biochem
February 2022
The objective of this work was to evaluate the biochemical characteristics of an enzymatic extract obtained from autochthonous fungus Aspergillus niger ITV02 and its application in the enzymatic hydrolysis of wheat straw and corn stubble pretreated by steam explosion. The enzymatic extract was obtained by submerged fermentation using delignified sweet sorghum bagasse as a carbon source. The results obtained showed that the enzymatic extract had β-glucosidase and endoglucanase activities.
View Article and Find Full Text PDFBiotechnol Lett
November 2020
Objectives: To evaluate a strain of Fusarium verticillioides ITV03 isolated from wood residues in the Veracruz region of Mexico. Endoglucanase and β-glucosidase production by submerged fermentation was optimized using a Box-Behnken design, where the independent variables were urea, ammonium sulfate and yeast extract.
Results: After optimization, an endoglucanase activity of 0.
Plant suspension culture is attracting interest as a promising platform to produce biological medicines due to the absence of virus, prions or DNA related to mammals during the production process. However, the heterogenic plant cell proliferation nature is particularly challenging for establishing industrial processes based on innovative approaches currently used, particularly in the animal cell culture industry. In this context, while Process Analytical Technology (PAT) tools have been used to monitor classical parameters such as biomass dry weight, its use in cells heterogeneity has received limited attention.
View Article and Find Full Text PDFEng Life Sci
September 2018
The application of near-infrared spectroscopy monitoring of xylose metabolizing yeast such as for ethanol production with semisynthetic media, applying chemometrics, was investigated. During the process in a bioreactor, biomass, glucose, xylose, ethanol, acetic acid, and glycerol determinations were performed by a transflection probe immersed in the culture broth and connected to a near-infrared process analyzer. Wavelength windows in near-infrared spectra recorded between 800 and 2200 nm were pretreated using Savitzky-Golay smoothing, second derivative and multiplicative scattering correction in order to perform a partial least squares regression and generate the calibration models.
View Article and Find Full Text PDFRaw vine-trimming wastes or the solid residues obtained after different fractionation treatments were evaluated for their suitability as Amycolatopsis sp. immobilization carriers during the bioconversion of ferulic acid into valuable phenolic compounds such as vanillin, vanillyl alcohol, and vanillic acid, the main flavor components of vanilla pods. Previously, physical-chemical characteristics of the materials were determined by quantitative acid hydrolysis and water absorption index (WAI), and microbiological characteristics by calculating the cell retention in the carrier (λ).
View Article and Find Full Text PDFThe application feasibility of in-situ or in-line monitoring of S. cerevisiae ITV01 alcoholic fermentation process, employing Near-Infrared Spectroscopy (NIRS) and Chemometrics, was investigated. During the process in a bioreactor, in the complex analytical matrix, biomass, glucose, ethanol and glycerol determinations were performed by a transflection fiber optic probe immersed in the culture broth and connected to a Near-Infrared (NIR) process analyzer.
View Article and Find Full Text PDFBackground: Avocado (Persea americana Mill, cv. Hass) fruit ranks tenth in terms of the most important products for Mexico. Avocado products are quite unstable due to the presence of oxidative enzymes such as polyphenol oxidase and peroxidase.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2014
Cell immobilization has shown to be especially adequate for xylitol production. This work studies the suitability of the air lift bioreactor for xylitol production by Debaryomyces hansenii immobilized in Ca-alginate operating in fed-batch cultures to avoid substrate inhibition. The results showed that the air lift bioreactor is an adequate system since the minimum air flow required for fluidization was even lower than that leading to the microaerobic conditions that trigger xylitol accumulation by this yeast, also maintaining the integrity of the alginate beads and the viability of the immobilized cells until 3 months of reuses.
View Article and Find Full Text PDF