Our prior study (Tarasov et al., 2022) discovered that numerous adaptive mechanisms emerge in response to cardiac-specific overexpression of adenylyl cyclase type 8 (TGAC8) which included overexpression of a large number of proteins. Here, we conducted an unbiased phosphoproteomics analysis in order to determine the role of altered protein phosphorylation in the adaptive heart performance and protection profile of adult TGAC8 left ventricle (LV) at 3-4 months of age, and integrated the phosphoproteome with transcriptome and proteome.
View Article and Find Full Text PDFAdult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TG) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TG, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TG was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TG vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TG did not differ from WT.
View Article and Find Full Text PDFNumerous groups have documented that Ascorbic Acid (AA) promotes cardiomyocyte differentiation from both mouse and human ESCs and iPSCs. AA is now considered indispensable for the routine production of hPSC-cardiomyocytes (CMs) using defined media; however, the mechanisms involved with the inductive process are poorly understood. Using a genetically modified mouse embryonic stem cell (mESC) line containing a dsRED transgene driven by the cardiac-restricted portion of the ncx1 promoter, we show that AA promoted differentiation of mESCs to CMs in a dose- and time-dependent manner.
View Article and Find Full Text PDFAngiogenesis in the lung involves the systemic bronchial vasculature and becomes prominent when chronic inflammation prevails. Mechanisms for neovascularization following pulmonary ischemia include growth factor transit from ischemic parenchyma to upstream bronchial arteries, inflammatory cell migration/recruitment through the perfusing artery, and paracrine effects of lung cells within the left bronchus, the niche where arteriogenesis takes place. We analyzed left lung bronchoalveolar lavage (BAL) fluid and left bronchus homogenates after left pulmonary artery ligation (LPAL) in rats, immediately after the onset of ischemia (0 h), 6 h and 24 h later.
View Article and Find Full Text PDFJ Appl Physiol (1985)
February 2011
Bronchial vascular angiogenesis takes place in a variety of lung inflammatory conditions such as asthma, cystic fibrosis, lung cancer, and chronic pulmonary thromboembolic disease. However, it is unclear whether neovascularization is predominantly appropriate and preserves lung tissue or whether it contributes further to lung pathology through edema formation and inflammation. In the present study we examined airway and lung parenchymal function 14 days after left pulmonary artery ligation.
View Article and Find Full Text PDFCell-based therapies hold promise of repairing an injured heart, and the description of stem and progenitor cells with cardiomyogenic potential is critical to its realization. At the vanguard of these efforts are analyses of embryonic stem cells, which clearly have the capacity to generate large numbers of cardiomyocytes in vitro. Through the use of this model system, a number of signaling mechanisms have been worked out that describes at least partially the process of cardiopoiesis.
View Article and Find Full Text PDF