Publications by authors named "Maria Grazia Muoio"

Article Synopsis
  • Cardiac lipotoxicity, a problem linked to obesity, can lead to cell death in heart cells (cardiomyocytes), but a peptide called PSELT shows promise in protecting against this damage.
  • PSELT helps to prevent oxidative stress and maintains important proteins like SELENOT while also regulating the activity of CD36, the main fatty acid transporter, countering the damage caused by palmitate exposure.
  • Additionally, PSELT enhances mitochondrial function and structure, preserving energy production and cellular health in cardiomyocytes, as confirmed by various experiments including electron microscopy.
View Article and Find Full Text PDF

Mitochondria are key organelles for the maintenance of myocardial tissue homeostasis, playing a pivotal role in adenosine triphosphate (ATP) production, calcium signaling, redox homeostasis, and thermogenesis, as well as in the regulation of crucial pathways involved in cell survival. On this basis, it is not surprising that structural and functional impairments of mitochondria can lead to contractile dysfunction, and have been widely implicated in the onset of diverse cardiovascular diseases, including ischemic cardiomyopathy, heart failure, and stroke. Several studies support mitochondrial targets as major determinants of the cardiotoxic effects triggered by an increasing number of chemotherapeutic agents used for both solid and hematological tumors.

View Article and Find Full Text PDF

The insulin receptor isoform A (IR-A), a dual receptor for insulin and IGF2, plays a role in breast cancer (BC) progression and metabolic reprogramming. Notably, discoidin domain receptor 1 (DDR1), a collagen receptor often dysregulated in cancer, is involved in a functional crosstalk and feed forward loop with both the IR-A and the insulin like growth factor receptor 1 (IGF1R). Here, we aimed at investigating whether DDR1 might affect BC cell metabolism by modulating the IGF1R and/or the IR.

View Article and Find Full Text PDF

Background: Breast cancer (BC) mortality is increased among obese and diabetic patients. Both obesity and diabetes are associated with dysregulation of both the IGF-1R and the RAGE (Receptor for Advanced Glycation End Products) pathways, which contribute to complications of these disorders. The alarmin S100A7, signaling through the receptor RAGE, prompts angiogenesis, inflammation, and BC progression.

View Article and Find Full Text PDF

The development and progression of the great majority of breast cancers (BCs) are mainly dependent on the biological action elicited by estrogens through the classical estrogen receptor (ER), as well as the alternate receptor named G-protein-coupled estrogen receptor (GPER). In addition to estrogens, other hormones and growth factors, including the insulin and insulin-like growth factor system (IIGFs), play a role in BC. IIGFs cooperates with estrogen signaling to generate a multilevel cross-communication that ultimately facilitates the transition toward aggressive and life-threatening BC phenotypes.

View Article and Find Full Text PDF

The G protein-coupled estrogen receptor (GPER, formerly known as GPR30) is a seven-transmembrane receptor that mediates estrogen signals in both normal and malignant cells. In particular, GPER has been involved in the activation of diverse signaling pathways toward transcriptional and biological responses that characterize the progression of breast cancer (BC). In this context, a correlation between GPER expression and worse clinical-pathological features of BC has been suggested, although controversial data have also been reported.

View Article and Find Full Text PDF

Cancer associated fibroblasts (CAFs) play a main role in breast cancer progression and metastasis. Estrogens modulate in breast CAFs the expression of microRNAs (miRNAs) that are involved in the development of many tumors. In order to provide novel insights on the regulation of miRNAs by estrogens in breast cancer, we analyzed the expression of 754 miRNAs in CAFs obtained from primary mammary tumors and CAFs derived from a cutaneous breast cancer metastasis.

View Article and Find Full Text PDF