One open question in the biology of growth factor receptors is how a quantitative input (i.e., ligand concentration) is decoded by the cell to produce specific response(s).
View Article and Find Full Text PDFAlthough endocytosis was first described as the process mediating macromolecule or nutrient uptake through the plasma membrane, it is now recognised as a critical component of the cellular infrastructure involved in numerous processes, ranging from receptor signalling, proliferation and migration to polarity and stem cell regulation. To realise these varying roles, endocytosis needs to be finely regulated. Accordingly, multiple endocytic mechanisms exist that require specialised molecular machineries and an array of endocytic adaptor proteins with cell-specific functions.
View Article and Find Full Text PDFThe subversion of endocytic routes leads to malignant transformation and has been implicated in human cancers. However, there is scarce evidence for genetic alterations of endocytic proteins as causative in high incidence human cancers. Here, we report that Epsin 3 (EPN3) is an oncogene with prognostic and therapeutic relevance in breast cancer.
View Article and Find Full Text PDFMitotic progression is orchestrated by morphological and mechanical changes promoted by the coordinated activities of the microtubule (MT) cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs assemble the mitotic spindle, which assists sister chromatid separation, and contact the rigid and tensile actomyosin cortex rounded-up underneath the PM. Here, we highlight the dynamic crosstalk between MTs, actin and cell membranes during mitosis, and discuss the molecular connections between them.
View Article and Find Full Text PDFAdaptor protein 2 (AP2) is a major constituent of clathrin-coated pits (CCPs). Whether it is essential for all forms of clathrin-mediated endocytosis (CME) in mammalian cells is an open issue. Here, we demonstrate, by live TIRF microscopy, the existence of a subclass of relatively short-lived CCPs lacking AP2 under physiological, unperturbed conditions.
View Article and Find Full Text PDFEPS15 and its homologous EPS15L1 are endocytic accessory proteins. Studies in mammalian cell lines suggested that EPS15 and EPS15L1 regulate endocytosis in a redundant manner. However, at the organismal level, it is not known to which extent the functions of the two proteins overlap.
View Article and Find Full Text PDFSignaling from the epidermal growth factor receptor (EGFR) elicits multiple biological responses, including cell proliferation, migration, and survival. Receptor endocytosis and trafficking are critical physiological processes that control the strength, duration, diversification, and spatial restriction of EGFR signaling through multiple mechanisms, which we review in this chapter. These mechanisms include: (i) regulation of receptor density and activation at the cell surface; (ii) concentration of receptors into distinct nascent endocytic structures; (iii) commitment of the receptor to different endocytic routes; (iv) endosomal sorting and postendocytic trafficking of the receptor through distinct pathways, and (v) recycling to restricted regions of the cell surface.
View Article and Find Full Text PDFNumb functions as an oncosuppressor by inhibiting Notch signaling and stabilizing p53. This latter effect depends on the interaction of Numb with Mdm2, the E3 ligase that ubiquitinates p53 and commits it to degradation. In breast cancer (BC), loss of Numb results in a reduction of p53-mediated responses including sensitivity to genotoxic drugs and maintenance of homeostasis in the stem cell compartment.
View Article and Find Full Text PDFThe integration of endocytic routes is critical to regulate receptor signaling. A nonclathrin endocytic (NCE) pathway of the epidermal growth factor receptor (EGFR) is activated at high ligand concentrations and targets receptors to degradation, attenuating signaling. Here we performed an unbiased molecular characterization of EGFR-NCE.
View Article and Find Full Text PDFThe ability of cells to alter their phenotypic and morphological characteristics, known as cellular plasticity, is critical in normal embryonic development and adult tissue repair and contributes to the pathogenesis of diseases, such as organ fibrosis and cancer. The epithelial-to-mesenchymal transition (EMT) is a type of cellular plasticity. This transition involves genetic and epigenetic changes as well as alterations in protein expression and post-translational modifications.
View Article and Find Full Text PDFProtein interaction modules coordinate the connections within and the activity of intracellular signaling networks. The Eps15 Homology (EH) module, a protein-protein interaction domain that is a key feature of the EH-network, was originally identified in a few proteins involved in endocytosis and vesicle trafficking, and has subsequently also been implicated in actin reorganization, nuclear shuttling, and DNA repair. Here we report an extensive characterization of the physical connections and of the functional wirings of the EH-network in the nematode.
View Article and Find Full Text PDFActin capping and cross-linking proteins regulate the dynamics and architectures of different cellular protrusions. Eps8 is the founding member of a unique family of capping proteins capable of side-binding and bundling actin filaments. However, the structural basis through which Eps8 exerts these functions remains elusive.
View Article and Find Full Text PDFThe TOCA family of F-BAR-containing proteins bind to and remodel lipid bilayers via their conserved F-BAR domains, and regulate actin dynamics via their N-Wasp binding SH3 domains. Thus, these proteins are predicted to play a pivotal role in coordinating membrane traffic with actin dynamics during cell migration and tissue morphogenesis. By combining genetic analysis in Caenorhabditis elegans with cellular biochemical experiments in mammalian cells, we showed that: i) loss of CeTOCA proteins reduced the efficiency of Clathrin-mediated endocytosis (CME) in oocytes.
View Article and Find Full Text PDFIntersectin is a multifunctional protein that interacts with components of the endocytic and exocytic pathways, and it is also involved in the control of actin dynamics. Drosophila intersectin is required for viability, synaptic development, and synaptic vesicle recycling. Here, we report the characterization of intersectin function in Caenorhabditis elegans.
View Article and Find Full Text PDFRedundant gene function frequently hampers investigations of the physiological roles of mammalian proteins. This is the case for Eps8, a receptor tyrosine kinase (RTK) substrate that participates in the activation of the Rac-specific guanine nucleotide-exchange function of Sos1 (refs 2-5), thereby regulating actin remodelling by RTKs. EPS8-knockout mice, however, exhibit no evident phenotype, owing to the redundant function of three other EPS8-related genes.
View Article and Find Full Text PDFLymphokines interleukin-4 (IL4) and IL13 exert overlapping biological activities via the shared use of the IL4 receptor alpha-chain and signal transducer and activator of transcription 6 (Stat6). Stat6 is critical for T-helper 2 cell differentiation, B-cell Ig class switch, and allergic diseases; thus, understanding its regulation is of central importance. Phosphorylation is crucial for Stat activity.
View Article and Find Full Text PDF