Background: Bicuspid aortic valve (BAV) is the most common congenital heart defect in adults, often leading to complications such as thoracic aortic aneurysms and aortic stenosis. While BAV is frequently associated with 22q11.2 deletion syndrome (22q11.
View Article and Find Full Text PDFBicuspid aortic valve (BAV), the most common congenital heart defect, is a major cause of aortic valve disease requiring valve interventions and thoracic aortic aneurysms predisposing to acute aortic dissections. The spectrum of BAV ranges from early onset valve and aortic complications (EBAV) to sporadic late onset disease. Rare genomic copy number variants (CNVs) have previously been implicated in the development of BAV and thoracic aortic aneurysms.
View Article and Find Full Text PDFMicronuclei (MN) are a nuclear abnormality that occurs when chromosome fragments or whole chromosomes are not properly segregated during mitosis and consequently are excluded from the main nuclei and wrapped within nuclear membrane to form small nuclei. This maldistribution of genetic material leads to abnormal cellular genomes which may increase risk of developmental defects, cancers, and accelerated aging. Despite the potential importance of MN as biomarkers of genotoxicity, very little was known about the optimal way to measure MN in humans, the normal ranges of values of MN in healthy humans and the prospective association of MN with developmental and degenerative diseases prior to the 1980's.
View Article and Find Full Text PDFBackground: The European-funded Health Effects of Cardiac Fluoroscopy and Modern Radiotherapy in Pediatrics (HARMONIC) project aims to improve knowledge on the effects of medical exposure to ionizing radiation (IR) received during childhood. One of its objectives is to build a consolidated European cohort of pediatric patients who have undergone cardiac catheterization (Cath) procedures, with the goal of enhancing the assessment of long-term radiation-associated cancer risk. The purpose of our study is to provide a detailed description of the Italian cohort contributing to the HARMONIC project, including an analysis of cumulative IR exposure, reduction trend over the years and an overview of the prospective collection of biological samples for research in this vulnerable population.
View Article and Find Full Text PDFMajor strides have been made in the development of FLASH radiotherapy (FLASH RT) in the last ten years, but there are still many obstacles to overcome for transfer to the clinic to become a reality. Although preclinical and first-in-human clinical evidence suggests that ultra-high dose rates (UHDRs) induce a sparing effect in normal tissue without modifying the therapeutic effect on the tumor, successful clinical translation of FLASH-RT depends on a better understanding of the biological mechanisms underpinning the sparing effect. Suitable in vitro studies are required to fully understand the radiobiological mechanisms associated with UHDRs.
View Article and Find Full Text PDFTelomere shortening, chromosomal damage, and mitochondrial dysfunction are major initiators of cell aging and biomarkers of many diseases. However, the underlying correlations between nuclear and mitochondrial DNA alterations remain unclear. We investigated the relationship between telomere length (TL) and micronucleus (MN) and their association with mitochondrial DNA copy number (mtDNAcn) in peripheral blood mononuclear cells (PBMCs) in response to 100 μM and 200 μM of hydrogen peroxide (HO) at 44, 72, and 96 h.
View Article and Find Full Text PDFTelomere dysfunction is implicated in vascular aging and shorter leucocyte telomeres are associated with an increased risk of atherosclerosis, myocardial infarction, and heart failure. Another pathophysiological mechanism that explains the causal relationship between telomere shortening and atherosclerosis development focuses on the clonal hematopoiesis of indeterminate potential (CHIP), which represents a new and independent risk factor in atherosclerotic cardiovascular diseases. Since telomere attrition has a central role in driving vascular senescence, understanding telomere biology is essential to modulate the deleterious consequences of vascular aging and its cardiovascular disease-related manifestations.
View Article and Find Full Text PDFBicuspid aortic valve (BAV), the most common congenital heart defect, is a major cause of aortic valve disease requiring valve interventions and thoracic aortic aneurysms predisposing to acute aortic dissections. The spectrum of BAV ranges from early onset valve and aortic complications (EBAV) to sporadic late onset disease. Rare genomic copy number variants (CNVs) have previously been implicated in the development of BAV and thoracic aortic aneurysms.
View Article and Find Full Text PDFBackground: Both telomere shortening and the chromosome 9p21.3 (Chr9p21) rs1333049 (G/C) variant are involved in coronary artery disease (CAD) risk, likely affecting mechanisms related to cell cycle arrest and vascular senescence. The aim of the study was to examine the link between Chr9p21 rs1333049 variant and leucocyte telomere length (LTL), as well as their interactive effect on the risk of major adverse cardiovascular events (MACEs).
View Article and Find Full Text PDFClinical and epidemiological evidence has recently revealed a link between coronary artery disease (CAD) and cancer. Shared risk factors and common biological pathways are probably involved in both pathological conditions. The aim of this paper was to evaluate whether and which conventional risk factors and novel circulating biomarkers could predict cancer incidence and death in patients with CAD.
View Article and Find Full Text PDFThe Health Effects of Cardiac Fluoroscopy and Modern Radiotherapy (photon and proton) in Pediatrics (HARMONIC) is a five-year project funded by the European Commission that aimed to improve the understanding of the long-term ionizing radiation (IR) risks for pediatric patients. In this paper, we provide a detailed overview of the rationale, design, and methods for the biological aspect of the project with objectives to provide a mechanistic understanding of the molecular pathways involved in the IR response and to identify potential predictive biomarkers of individual response involved in long-term health risks. Biological samples will be collected at three time points: before the first exposure, at the end of the exposure, and one year after the exposure.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
March 2023
Fluoroscopically guided cardiac procedures are an essential component of care in the practice of cardiology, and are, in most cases, lifesaving [...
View Article and Find Full Text PDFEpidemiological studies have shown an increased prevalence of cancer in patients with congenital heart disease (CHD) as compared with the general population. The underlying risk factors for the acquired cancer risk remain poorly understood, and shared genetic anomalies and cumulative radiation exposure from repeated imaging and catheterization procedures may be contributing factors. In the present review, we provide an update on the most recent literature regarding the associations between CHD and cancer, with a particular focus on genetic etiology and radiation exposure from medical procedures.
View Article and Find Full Text PDFNutr Metab Cardiovasc Dis
May 2022
Background And Aim: Alterations of glucose homeostasis can increase advanced glycation end products (AGEs) that exacerbate vascular inflammatory disease and may increase vascular senescence and aging. This study examined the relationships between carboxymethyl-lysine (CML) and soluble receptor for AGEs (sRAGE) with leukocyte telomere length (LTL) and mitochondrial DNA copy number (mtDNAcn), as cell aging biomarkers, in patients with established coronary artery disease (CAD).
Methods And Results: We studied 459 patients with CAD further categorized as having normal glucose homeostasis (NG, n = 253), pre-diabetes (preT2D, n = 85), or diabetes (T2D, n = 121).
Purpose: Flash radiotherapy (FLASH-RT) is currently being regarded as the next breakthrough in radiation treatment of cancer, delivering ultrahigh radiation doses in a very short time, and sparing normal tissues from detrimental injury. Here we review the current evidence on the preclinical findings as well as the radiobiological mechanisms underlying the FLASH effect. We also briefly examine the scenario of available technologies for delivering FLASH dose-rates for research and their implications for future clinical use.
View Article and Find Full Text PDFThe purpose of the "Micronuclei and Disease" special issue (SI) is to: (i) Determine the level of evidence for association of micronuclei (MN), a biomarker of numerical and structural chromosomal aberrations, with risk of specific diseases in humans; (ii) Define plausible mechanisms that explain association of MN with each disease; (iii) Identify knowledge gaps and research needed to translate MN assays into clinical practice. The "MN and Disease" SI includes 14 papers. The first is a review of mechanisms of MN formation and their consequences in humans.
View Article and Find Full Text PDFBackground: The evaluation of environmental exposure risk requires a global analysis of pollution phenomena, including biological effects and potentially correlated clinical outcomes in susceptible populations. Although human biomonitoring plays a fundamental role in assessing the degree of contamination, it is not effective alone in identifying a direct link between exposure, biomolecular effects and outcomes on target organisms. While toxicogenomics and epidemiology are mainly focused on the investigation of molecular reactions and clinical outcomes, the monitoring of environmental matrices works independently to characterize the territorial distribution of toxic compounds, without proving any correlated health risk for residents.
View Article and Find Full Text PDFMedical staff represent the largest group of workers occupationally exposed to ionizing radiation (IR). Chronic exposure to low-dose IR may result in DNA damage and genotoxicity associated with increased risk of cancer. This review aims to identify the genotoxicity biomarkers that are the most elevated in IR-exposed vs.
View Article and Find Full Text PDFCoronary artery disease (CAD) is the leading cause of morbidity and mortality worldwide. Coronary angiography allows an accurate assessment of the extent and severity of atherosclerotic coronary narrowing, but it provides little characterization of early detection of potentially asymptomatic vulnerable plaque. The identification of the coronary "vulnerable patient" or high-risk plaques remains a major challenge in the treatment of CAD.
View Article and Find Full Text PDFSingle-nucleotide polymorphisms in miRNA-machinery genes may alter the biogenesis of miRNAs affecting disease susceptibility. In this case-control study, we aimed to evaluate the impact of three single-nucleotide polymorphisms (DICER rs1057035, DROSHA rs10719, and XPO5 rs11077) and their combined effect in a genetic risk score model on congenital heart disease (CHD) risk. A total of 639 participants was recruited, including 125 patients with CHD (65 males; age 9.
View Article and Find Full Text PDFSNPs in miRNA machinery genes may affect miRNA function by impacting their biogenesis. Here, we investigated the association between three SNPs in miRNA machinery genes ( rs1057035, rs10719 and rs11077) and bicuspid aortic valve (BAV). Three polymorphisms were analyzed in 177 BAV patients and 414 healthy subjects by using a TaqManSNP assay.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.