Publications by authors named "Maria Gomez-Brandon"

Vegetation degradation in natural environments leads to considerable fluctuations in soil function indicators, particularly in the sensitive and delicate habitats of semi-arid regions. In this study, the dynamic of both litter and soil properties was examined in northern Iran, in sites with Crataegus melanocarpa and Berberis integerrima dominance. The chosen sites have been degraded in 1993 due to exploitation for fuel production.

View Article and Find Full Text PDF

Bioconversion of livestock wastes using insect larvae represents an emerging and effective strategy for waste management. However, knowledge on the role of the garden fruit chafer (Pachnoda sinuataL.) in waste recycling and influence on the diversity ofmicrobial community infrass fertilizeris limited.

View Article and Find Full Text PDF

Soil quality and function in forest environments are influenced by the interaction of soil-forming parameters and silvicultural systems. Hyrcanian forests were recently accepted as a UNESCO World Heritage Site, which extends across an area of approximately 1.8 million hectares and ascend to an elevation of 2800 m above sea level (m.

View Article and Find Full Text PDF

The treatment of winery wastes by using appropriate management technologies is of utmost need in order to reduce to a minimum their disposal and avoid negative environmental impacts. This is of particular interest for grape marc, the main solid by-product of the winery industry. However, comparative studies on a pilot-scale dealing with the impact of earthworms on marc derived from both red and white grape varieties during vermicomposting are still scarce.

View Article and Find Full Text PDF

Sidestream partial nitritation and deammonification (pN/A) of high-strength ammonia wastewater is a well-established technology. Its expansion to the mainstream is, however mainly impeded by poor retention of anaerobic ammonia oxidizing bacteria (AnAOB), insufficient repression of nitrite oxidizing bacteria (NOB) and difficult control of soluble chemical oxygen demand and nitrite levels. At the municipal wastewater treatment plant in Strass (Austria) the microbial consortium was exhaustively monitored at full-scale over one and a half year with regular transfer of sidestream DEMON® biomass and further retention and enrichment of granular anammox biomass via hydrocyclone operation.

View Article and Find Full Text PDF

Finding strategies to reuse and treat organic wastes is of utmost need. Biological processes offer the possibility to transform them into safer end products with benefits for both agriculture and the environment. Moreover, it represents an ecologically-sound and economically attractive alternative to landfill disposal and incineration.

View Article and Find Full Text PDF

A globally increased demand for fuels and environmental concerns regarding fossil sources call for sustainable alternatives. Fast pyrolysis is a promising approach for converting different types of biomass to renewable Fast Pyrolysis Bio-Oil (FPBO) that can be used for heating, power generation and mobility. Side-products emerging from the process include low calorific gases and charcoal.

View Article and Find Full Text PDF

Organic wastes have the potential to be used as soil organic amendments after undergoing a process of stabilization such as composting or as a resource of renewable energy by anaerobic digestion (AD). Both composting and AD are well-known, eco-friendly approaches to eliminate and recycle massive amounts of wastes. Likewise, the application of compost amendments and digestate (the by-product resulting from AD) has been proposed as an effective way of improving soil fertility.

View Article and Find Full Text PDF

Microbiome studies mostly rely on total DNA extracts obtained directly from environmental samples. The total DNA consists of both intra- and extracellular DNA, which differ in terms of their ecological interpretation. In the present study, we have investigated for the first time the differences among the three DNA types using microbiome sequencing of deadwood logs (Hunter decay classes I, III, and V).

View Article and Find Full Text PDF

In recent years, there has been a veritable boost in next-generation sequencing (NGS) of gene amplicons in biological and medical studies. Huge amounts of data are produced and need to be analyzed adequately. Various online and offline analysis tools are available; however, most of them require extensive expertise in computer science or bioinformatics, and often a Linux-based operating system.

View Article and Find Full Text PDF

Deadwood decomposition is relevant in nature and wood inhabiting fungi (WIF) are its main decomposers. However, climate influence on WIF community and their interactions with bacteria are poorly understood. Therefore, we set up an in-field mesocosm experiment in the Italian Alps and monitored the effect of slope exposure (north- vs.

View Article and Find Full Text PDF

Vermicomposting has been found as a profitable approach to dispose of and treat large quantities of raw grape marc. However, less information is available with regard to its efficiency for treating distillery winery byproducts, even though distillation has been widely used as a way to economically valorize grape marc. As such, we sought to characterize the compositional and functional changes in bacterial communities during vermicomposting of distilled grape marc by using 16S rRNA high-throughput sequencing.

View Article and Find Full Text PDF

Previous studies dealing with changes in microbial communities during vermicomposting were mostly performed at lab-scale conditions and by using low-throughput techniques. Therefore, we sought to characterize the bacterial succession during the vermicomposting of grape marc over a period of 91 days in a pilot-scale vermireactor. Samples were taken at the initiation of vermicomposting, and days 14, 28, 42, and 91, representing both active and mature stages of vermicomposting.

View Article and Find Full Text PDF

The viability of carbonyl sulfide (COS) measurements for partitioning ecosystem-scale net carbon dioxide (CO) fluxes into photosynthesis and respiration critically depends on our knowledge of non-leaf sinks and sources of COS in ecosystems. We combined soil gas exchange measurements of COS and CO with next-generation sequencing technology (NGS) to investigate the role of soil microbiota for soil COS exchange. We applied different treatments (litter and glucose addition, enzyme inhibition and gamma sterilization) to soil samples from a temperate grassland to manipulate microbial composition and activity.

View Article and Find Full Text PDF

Microbes drive leaf litter decomposition, and their communities are adapted to the local vegetation providing that litter. However, whether these local microbial communities confer a significant home-field advantage in litter decomposition remains unclear, with contrasting results being published. Here, we focus on a litter transplantation experiment from oak forests (home site) to two away sites without oak in South Tyrol (Italy).

View Article and Find Full Text PDF

Vermicomposting is the process by which organic waste is broken down through the synergistic actions of earthworms and microbial communities. Although vermicomposting has been shown to effectively reduce organic biomass and generate high-quality fertilizer for plants, little is known about the bacterial communities that are involved in this decomposition process. Since optimization of vermicomposting for commercial use necessitates additional knowledge of the underlying biological processes, this study sought to characterize the bacterial succession involved in the vermicomposting of Scotch broom (Cytisus scoparius), a leguminous shrub that has become invasive around the world with consequences for the dynamics and productivity of the ecosystems they occupy.

View Article and Find Full Text PDF

Winemaking produces millions of tons of grape marc, a byproduct of grape pressing, each year. Grape marc is made up of the skins, stalks, and seeds remaining after pressing. Raw grape marc can be hazardous to the environment due to its low pH and high polyphenol content, but previous work has shown that grape marc can be stabilized via vermicomposting to produce organic fertilizer.

View Article and Find Full Text PDF

Grapes are one of the most cultivated fruit crops worldwide. Either for wine or juice production, grape processing generates a large amount of residues that must be treated, disposed of or reused properly to reduce their pollution load before being applied to the soil. In this review, a special focus is given to the treatment and valorization of the winemaking by-product like grape marc via anaerobic digestion, composting and vermicomposting at laboratory, pilot, and industrial scales.

View Article and Find Full Text PDF

Grape marc, the main solid by-product of the wine industry, can be used as a nutrient-rich organic amendment if treated appropriately before its application into soil. In this study, we evaluated the potential of vermicomposting to process grape marc derived from the red winemaking of Mencía grapes in order to yield a high-quality, polyphenol-free organic vermicompost that could be used as an environmentally friendly fertiliser. We observed that the grape marc from this cultivar appears to be an optimum substrate for feeding earthworms providing optimum conditions for growth and reproduction, and sufficient energy to sustain large populations.

View Article and Find Full Text PDF

Wild Scotch broom ( Cytisus scoparius (L.) Link) shrubs are widely distributed throughout the world and, in some countries, are considered to be a threat to other plant species. The use of plant biomass from Scotch broom as a fertiliser seems to be the optimum solution for its disposal because it contains considerable amounts of macronutrients.

View Article and Find Full Text PDF

Deadwood decay employs a complex metabolism and provides carbon and nutrients for soils. Although being highly diverse, the contribution of the bacterial deadwood colonizing community is underexplored compared with the fungal one. Therefore, we performed an in-field mesocosm study and monitored the bacterial communities in decaying experimental Picea abies wood blocks and their underlying soil on north- and south- exposed slopes in the Italian Alps over a 2-year period.

View Article and Find Full Text PDF

Due to their sensitivity to changing environmental conditions sub- and alpine soils are often monitored in the context of climate change, usually, however, neglecting slope exposure. Therefore, we set up a climosequence-approach to study the effect of exposure and, in general, climate, on the microbial biomass and microbial diversity and activity, comprising five pairs of north (N)- and south (S)-facing sites along an altitudinal gradient ranging from 1200 to 2400m a.s.

View Article and Find Full Text PDF