Publications by authors named "Maria Golubenko"

Background: Hypertrophic cardiomyopathy is the most frequent autosomal dominant disease, yet due to genetic heterogeneity, incomplete penetrance, and phenotype variability, the prognosis of the disease course in pathogenic variant carriers remains an issue. Identifying common patterns among the effects of different genetic variants is important.

Methods: We investigated the cause of familial hypertrophic cardiomyopathy (HCM) in a family with two patients suffering from a particularly severe disease.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an incurable, progressive chronic autoimmune demyelinating disease. Therapy for MS is based on slowing down the processes of neurodegeneration and suppressing the immune system of patients. MS is accompanied by inflammation, axon-degeneration and neurogliosis in the central nervous system.

View Article and Find Full Text PDF

Stimulating the process of angiogenesis in treating ischemia-related diseases is an urgent task for modern medicine, which can be achieved through the use of different cell types. Umbilical cord blood (UCB) continues to be one of the attractive cell sources for transplantation. The goal of this study was to investigate the role and therapeutic potential of gene-engineered umbilical cord blood mononuclear cells (UCB-MC) as a forward-looking strategy for the activation of angiogenesis.

View Article and Find Full Text PDF

Increasing evidence suggests that both coding and non-coding regions of sarcomeric protein genes can contribute to hypertrophic cardiomyopathy (HCM). Here, we introduce an experimental workflow (tested on four patients) for complete sequencing of the most common HCM genes (, , , and ) via long-range PCR, Oxford Nanopore Technology (ONT) sequencing, and bioinformatic analysis. We applied Illumina and Sanger sequencing to validate the results, FastQC, Qualimap, and MultiQC for quality evaluations, MiniMap2 to align data, Clair3 to call and phase variants, and Annovar's tools and CADD to assess pathogenicity of variants.

View Article and Find Full Text PDF

Brugada syndrome (BrS) is an inherited disorder characterized by specific ST segment elevation in the right precordial leads, pseudo right bundle branch block, and a high risk of sudden cardiac death due to ventricular tachycardia. It was initially described as a monogenic disorder with an autosomal dominant mode of inheritance. It is hypothesized that modifying genetic factors, in addition to disease-causing mutations, may significantly contribute to the clinical symptoms and the risk of sudden cardiac death.

View Article and Find Full Text PDF

Background: The colonization of Eurasia and Australasia by African modern humans has been explained, nearly unanimously, as the result of a quick southern coastal dispersal route through the Arabian Peninsula, the Indian subcontinent, and the Indochinese Peninsula, to reach Australia around 50 kya. The phylogeny and phylogeography of the major mitochondrial DNA Eurasian haplogroups M and N have played the main role in giving molecular genetics support to that scenario. However, using the same molecular tools, a northern route across central Asia has been invoked as an alternative that is more conciliatory with the fossil record of East Asia.

View Article and Find Full Text PDF

Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16-19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that - analysed alongside 100 published ones - enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East.

View Article and Find Full Text PDF

The objective of this study was to identify genes targeted by both copy number and copy-neutral changes in the right coronary arteries in the area of advanced atherosclerotic plaques and intact internal mammary arteries derived from the same individuals with comorbid coronary artery disease and metabolic syndrome. The artery samples from 10 patients were screened for genomic imbalances using array comparative genomic hybridization. Ninety high-confidence, identical copy number variations (CNVs) were detected.

View Article and Find Full Text PDF

Medieval era encounters of nomadic groups of the Eurasian Steppe and largely sedentary East Europeans had a variety of demographic and cultural consequences. Amongst these outcomes was the emergence of the Lipka Tatars-a Slavic-speaking Sunni-Muslim minority residing in modern Belarus, Lithuania and Poland, whose ancestors arrived in these territories via several migration waves, mainly from the Golden Horde. Our results show that Belarusian Lipka Tatars share a substantial part of their gene pool with Europeans as indicated by their Y-chromosomal, mitochondrial and autosomal DNA variation.

View Article and Find Full Text PDF

The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts.

View Article and Find Full Text PDF

Native Americans derive from a small number of Asian founders who likely arrived to the Americas via Beringia. However, additional details about the initial colonization of the Americas remain unclear. To investigate the pioneering phase in the Americas we analyzed a total of 623 complete mtDNAs from the Americas and Asia, including 20 new complete mtDNAs from the Americas and seven from Asia.

View Article and Find Full Text PDF

It has been often stated that the overall pattern of human maternal lineages in Europe is largely uniform. Yet this uniformity may also result from an insufficient depth and width of the phylogenetic analysis, in particular of the predominant western Eurasian haplogroup (Hg) H that comprises nearly a half of the European mitochondrial DNA (mtDNA) pool. Making use of the coding sequence information from 267 mtDNA Hg H sequences, we have analyzed 830 mtDNA genomes, from 11 European, Near and Middle Eastern, Central Asian, and Altaian populations.

View Article and Find Full Text PDF

A maximum parsimony tree of 21 complete mitochondrial DNA (mtDNA) sequences belonging to haplogroup X and the survey of the haplogroup-associated polymorphisms in 13,589 mtDNAs from Eurasia and Africa revealed that haplogroup X is subdivided into two major branches, here defined as "X1" and "X2." The first is restricted to the populations of North and East Africa and the Near East, whereas X2 encompasses all X mtDNAs from Europe, western and Central Asia, Siberia, and the great majority of the Near East, as well as some North African samples. Subhaplogroup X1 diversity indicates an early coalescence time, whereas X2 has apparently undergone a more recent population expansion in Eurasia, most likely around or after the last glacial maximum.

View Article and Find Full Text PDF

Mutations causing familial hypertrophic cardiomyopathy (HCM) have been described in at least 11 genes encoding cardiac sarcomeric proteins. In this study, three previously unknown deletions have been identified in the human cardiac genes coding for beta-myosin heavy chain (MYH7 on chromosome 14) and myosin-binding protein-C (MYBPC3 on chromosome 11). In family MM, a 3-bp deletion in MYH7 was detected to be associated with loss of glutamic acid in position 927 (DeltaE927) of the myosin rod.

View Article and Find Full Text PDF