Publications by authors named "Maria Gazda"

This work investigates how configurational entropy in oxides could affect proton conductivity. For this purpose, three samples of different elemental compositions are synthesized. Five, six and seven elements were introduced into the A-site of ANbO, forming La Nd SmGd EuNbO, LaNdSmGdEuHoNbO and LaNdSmGdEuHoErNbO, respectively.

View Article and Find Full Text PDF

Detection of incompatibility between an active pharmaceutical ingredient (API) and excipients, including the selection of the most biopharmaceutical advantageous excipients is extremely important in the pre-formulation process of developing a solid dosage form technology. Therefore, having fast and reliable methods for identifying incompatibility is fundamental in pharmaceutical technology. For this purpose, combined Fourier transform infrared (FTIR) and Raman spectroscopy as well as high-temperature X-ray diffraction (HT-XRD) were used as a new approach for incompatibility detection, whereas differential scanning calorimetry (DSC) was applied as a reference method.

View Article and Find Full Text PDF

This study concerns energetics of formation and the stability in high water partial pressure of BaLnCoO, (Ln = La, Pr, Nd, and Gd) (BLnC) and BaGdLaCoO, where = 0.2, 0.5, and 0.

View Article and Find Full Text PDF

Polycrystalline boron-doped diamond is a promising material for high-power aqueous electrochemical applications in bioanalytics, catalysis, and energy storage. The chemical vapor deposition (CVD) process of diamond formation and doping is totally diversified by using high kinetic energies of deuterium substituting habitually applied hydrogen. The high concentration of deuterium in plasma induces atomic arrangements and steric hindrance during synthesis reactions, which in consequence leads to a preferential (111) texture and more effective boron incorporation into the lattice, reaching a one order of magnitude higher density of charge carriers.

View Article and Find Full Text PDF

A group of multi-component oxides based on BaZrO have been prepared using a solid-state reaction method and examined in terms of their water uptake and thermodynamics of formation. Depending on the type and amount of acceptor substitution, the synthesized compounds exhibit various proton defect concentrations, reaching up to 0.2 mol/mol for a compound containing 10 different elements in the B-sublattice, where 50% of them are acceptors.

View Article and Find Full Text PDF

LaNb M O (where M=As, Sb, V, and Ta) oxides with pentavalent elements of different ionic sizes were synthesized by a solid-state reaction method. The vibrational properties of these oxides have been investigated. These studies revealed that the substituent element influences both Debye temperature value as well as the Raman active vibrational modes.

View Article and Find Full Text PDF

Since the formation of organic salts can improve the solubility, bioavailability, and stability of active pharmaceutical ingredients, the aim of this work was to prepare an organic salt of chlordiazepoxide with saccharin. To achieve this goal, the saccharin salt of chlordiazepoxide was obtained from a physical mixture of both components by grinding them with a small volume of solvent and by crystallizing them with complete evaporation of the solvent. The resulting salt was examined by methods such as Powder X-ray Diffraction (PXRD), Single Crystal X-ray Diffraction (SCXRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Fourier Transform Infrared (FT-IR), and Raman spectroscopy.

View Article and Find Full Text PDF

Magnetization reversal processes in the NiFe/FeMn exchange biased structures with various antiferromagnetic layer thicknesses (0-50 nm) and glass substrate temperatures (17-600 °C) during deposition were investigated in detail. Magnetic measurements were performed in the temperature range from 80 K up to 300 K. Hysteresis loop asymmetry was found at temperatures lower than 150 K for the samples with an antiferromagnetic layer thickness of more than 10 nm.

View Article and Find Full Text PDF

In this work, we present the characterization and electrochemical performance of various ternary silicon oxycarbide/graphite/tin (SiOC/C/Sn) nanocomposites as anodes for lithium-ion batteries. In binary SiOC/Sn composites, tin nanoparticles may be produced in situ via carbothermal reduction of SnO to metallic Sn, which consumes free carbon from the SiOC ceramic phase, thereby limiting the carbon content in the final ceramic nanocomposite. Therefore, to avoid drawbacks with carbon depletion, we used graphite as a substitute during the synthesis of precursors.

View Article and Find Full Text PDF

Prior studies of the thin film deposition of the metal-organic compound of Fe(pz)Pt[CN] (pz = pyrazine) using the matrix-assisted pulsed laser evaporation (MAPLE) method, provided evidence for laser-induced decomposition of the molecular structure resulting in a significant downshift of the spin transition temperature. In this work we report new results obtained with a tunable pulsed laser, adjusted to water resonance absorption band with a maximum at 3080 nm, instead of 1064 nm laser, to overcome limitations related to laser-target interactions. Using this approach, we obtain uniform and functional thin films of Fe(pz)Pt[CN] nanoparticles with an average thickness of 135 nm on Si and/or glass substrates.

View Article and Find Full Text PDF

An important challenge to overcome in the solid dosage forms technology is the selection of the most biopharmaceutically efficient polymeric excipients. The excipients can be selected, among others, by compatibility studies since incompatibilities between ingredients of the drug formulations adversely affect their bioavailability, stability, efficacy, and safety. Therefore, new, fast, and reliable methods for detecting incompatibility are constantly being sought.

View Article and Find Full Text PDF

BaLaCoFeO was synthesized in the solid-state reaction route. The influence of ball milling parameters (such as milling media size, angular velocity, and time), pelletizing pressure, and annealing parameters on the microstructure was studied. The grain size distribution and density or specific surface area changes were investigated in each approach while the individual parameters were changed.

View Article and Find Full Text PDF

A novel, bio-derived cyclodextrin-based trifunctional adsorbent has been successfully synthesized for efficient, rapid and simultaneous removal of a broad-spectrum of toxic ionic (anionic and cationic dyes) and non-ionic organic pollutants from water. The composition, morphology and the presence of functional groups in the obtained sorption material were characterized by elemental analysis, XRD, SEM, and FTIR spectroscopy. The adsorption results were represented by cationic dye (crystal violet, CV) and endocrine disrupting compound (bisphenol A, BPA) as an adsorbate.

View Article and Find Full Text PDF

Doping and modification of TiO nanotubes were carried out using the hydrothermal method. The introduction of small amounts of cobalt (0.1 at %) into the structure of anatase caused an increase in the absorption of light in the visible spectrum, changes in the position of the flat band potential, a decrease in the threshold potential of water oxidation in the dark, and a significant increase in the anode photocurrent.

View Article and Find Full Text PDF

Tin oxide is one of the most promising electrode materials as a negative electrode for lithium-ion batteries due to its higher theoretical specific capacity than graphite. However, it suffers lack of stability due to volume changes and low electrical conductivity while cycling. To overcome these issues, a new composite consisting of SnO2 and carbonaceous matrix was fabricated.

View Article and Find Full Text PDF

Lanthanum orthoantimonate was synthesized using a solid-state synthesis method. To enhance the possible protonic conductivity, samples with the addition of 1 mol % Ca in La-site were also prepared. The structure was studied by the means of X-ray diffraction, which showed that both specimens were single phase.

View Article and Find Full Text PDF

The application of double perovskite cobaltites BaCoO ( = lanthanide element) in electrochemical devices for energy conversion requires control of their properties at operating conditions. This work presents a study of a series of BaCoO ( = La, Pr, Nd) with a focus on the evolution of structural and electrical properties with temperature. Symmetry, oxygen non-stoichiometry, and cobalt valence state have been examined by means of Synchrotron Radiation Powder X-ray Diffraction (SR-PXD), thermogravimetry (TG), and X-ray Absorption Spectroscopy (XAS).

View Article and Find Full Text PDF

The defect fluorite yttrium niobate Y3NbO7 and pyrochlore yttrium titanate Y2Ti2O7 solid solutions have been synthesized via a solid state synthesis route. The resulting stoichiometry of the oxides is Y2+xTi2-2xNbxO7, where x = 0 to x = 1. All of the samples were single-phase; however, for those with a predominant fluorite phase, a small amount of additional pyrochlore phase was detected.

View Article and Find Full Text PDF

Thin layers of bismuth vanadate were deposited using the pulsed laser deposition technique on commercially available FTO (fluorine-doped tin oxide) substrates. Films were sputtered from a sintered, monoclinic BiVO pellet, acting as the target, under various oxygen pressures (from 0.1 to 2 mbar), while the laser beam was perpendicular to the target surface and parallel to the FTO substrate.

View Article and Find Full Text PDF

In this work, Fe-doped strontium titanate SrTiFeO, for x = 0-1 (STFx), has been fabricated and studied. The structure and microstructure analysis showed that the Fe amount in SrTiFeO has a great influence on the lattice parameter and microstructure, including the porosity and grain size. Oxygen nonstoichiometry studies performed by thermogravimetry at different atmospheres showed that the Fe-rich compositions (x > 0.

View Article and Find Full Text PDF
Nickel alendronate.

Acta Crystallogr Sect E Struct Rep Online

June 2012

The title compound {sys-tematic name: bis(μ(2)-dihydrogen 4-aza-niumyl-1-hy-droxy-butane-1,1-di-phos-pho-n-ato)bis-[aqua-(dihydrogen 4-aza-nium-yl-1-hy-droxy-butane-1,1-diphospho-n-ato)nickel(II)] dihydrate}, [Ni(2)(C(4)H(12)NO(7)P(2))(4)(H(2)O)(2)]·2H(2)O, was synthesiized under hydro-thermal conditions. Its structure is isotypic with the Co(II) analogue. The crystal structure is built up from centrosymmetric dinuclear complex mol-ecules and the structure is reinforced by a net of inter-molecular O-H⋯O and N-H⋯O hydrogen bonds.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnou9ugiptqvs9d8s9onvuk0ftm8ve166): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once