The presence of elevated ammonia levels is widely recognized as a significant contributor to process inhibition in biogas production, posing a common challenge for biogas plant operators. The present study employed a combination of biochemical, genome-centric metagenomic and metatranscriptomic data to investigate the response of the biogas microbiome to two shock loads induced by single pulses of elevated ammonia concentrations (i.e.
View Article and Find Full Text PDFIt is known that the presence of sulfate decreases the methane yield in the anaerobic digestion systems. Sulfate-reducing bacteria can convert sulfate to hydrogen sulfide competing with methanogens for substrates such as H and acetate. The present work aims to elucidate the microbial interactions in biogas production and assess the effectiveness of electron-conductive materials in restoring methane production after exposure to high sulfate concentrations.
View Article and Find Full Text PDFPacking materials improve biological methanation efficiency in Trickle Bed Reactors. The present study, which lies in the field of energy production and biotechnology, entailed the evaluation of commercial pelletized activated carbon and Raschig rings as packing materials. The evaluation focused on monitoring process indicators and examining the composition of the microbial community.
View Article and Find Full Text PDFBackground: The viral community has the potential to influence the structure of the microbiome and thus the yield of the anaerobic digestion process. However, the virome composition in anaerobic digestion is still under-investigated. A viral induction experiment was conducted on separate batches undergoing a series of DNA-damaging stresses, in order to coerce temperate viruses to enter the lytic cycle.
View Article and Find Full Text PDFLactic acid is a valuable compound used in several industrial processes such as polymers, emulsifiers manufacturing, pharmaceutical, and cosmetic formulations. The present study aims to evaluate the potential use of food waste to produce lactic acid through fermentation, both by indigenous microbiota and by the bio-augmentation with two lactic acid bacteria, namely Lactobacillus plantarum BS17 and Lactobacillus casei BP2. Fermentation was studied both in batch and continuously fed anaerobic reactors at mesophilic conditions and a Response Surface Methodology approach was used to optimize the bioprocess performance and determine the environmental parameters (namely pH and time) that lead to the enhancement of lactic acid production during the batch fermentation by indigenous microorganisms.
View Article and Find Full Text PDFCo-digestion with lipid-rich substrates is a likely strategy in biogas plants, due to their high energy content. However, the process stability is vulnerable to inhibition due to the sudden increase of fatty-acid concentration. Therefore, techniques that promote the adaptation of the microorganisms to the presence of lipids have been proposed.
View Article and Find Full Text PDFBackground: Heart transplantation is limited by a severe donor organ shortage. Potential donors with brain death (BD) and left ventricular dysfunction due to neurogenic stunning are currently excluded from donation--although such abnormalities can be reversible with aggressive treatment including Hormonal Treatment (HT) and deferred organ retrieval.
Aim: To assess the recovery of left ventricular dysfunction in potential brain-dead donors with hemodynamic instability treated by aggressive treatment and HT.