The H295R test guideline assay evaluates the effect of test substances on synthesis of 17β-estradiol (E2) and testosterone (T). The objective of this study was to leverage commercial immunoassay technology to develop a more efficient H295R assay to measure E2 and T levels in 384-well format. The resulting Homogenous Time Resolved Fluorescence assay platform (H295R-HTRF) was evaluated against a training set of 36 chemicals derived from the OECD inter-laboratory validation study, EPA guideline 890.
View Article and Find Full Text PDFEndolymphatic sac tumor (ELST) is a rare neoplasm arising in the temporal petrous region thought to originate from endolymphatic sac epithelium. It may arise sporadically or in association with Von-Hippel-Lindau syndrome (VHL). The ELST prevalence in VHL ranges from 3 to 16% and may be the initial presentation of the disease.
View Article and Find Full Text PDFCastration-resistant prostate cancer cells exhibit continued androgen receptor signaling in spite of low levels of ligand. Current therapies to block androgen receptor signaling act by inhibiting ligand production or binding. We developed bispecific antibodies capable of penetrating cells and binding androgen receptor outside of the ligand-binding domain.
View Article and Find Full Text PDFEpidermal growth factor (EGF) is linked to the pathogenesis of polycystic kidney disease (PKD). We explored signaling pathways activated by EGF in orpk cilia (-) collecting duct cell line derived from a mouse model of PKD (hypomorph of the Tg737/Ift88 gene) with severely stunted cilia, and in a control orpk cilia (+) cell line with normal cilia. RT-PCR demonstrated mRNAs for EGF receptor subunits ErbB1, ErbB2, ErbB3, ErbB4, and mRNAs for Na(+)/H(+) exchangers (NHE), NHE-1, NHE-2, NHE-3, NHE-4, and NHE-5 in both cell lines.
View Article and Find Full Text PDFBackground: The vasoactive peptide bradykinin (BK) acts as a potent growth factor for normal kidney cells, but there have been few studies on the role of BK in renal cell carcinomas.
Purpose: In this study, we tested the hypothesis that BK also acts as a mitogen in kidney carcinomas, and explored the effects of BK in human renal carcinoma A498 cells.
Methods: The presence of mRNAs for BK B(1) and BK B(2) receptors in A498 cells was demonstrated by reverse transcription-polymerase chain reaction.
Angiotensin II (AII) binds to G protein-coupled receptor AT(1) and stimulates extracellular signal-regulated kinase (ERK), leading to vascular smooth muscle cells (VSMC) proliferation. Proliferation of mammalian cells is tightly regulated by adhesion to the extracellular matrix, which occurs via integrins. To study cross-talk between G protein-coupled receptor- and integrin-induced signaling, we hypothesized that integrins are involved in AII-induced proliferation of VSMC.
View Article and Find Full Text PDFWe have shown previously that the vasoactive peptide bradykinin (BK) stimulates proliferation of a cultured murine cell model of the inner medullary collecting duct (mIMCD-3 cells) via transactivation of epidermal growth factor receptor (EGFR) by a mechanism that involves matrix metalloproteinases (collagenase-2 and -3). Because collagenases lack an integral membrane domain, we hypothesized that receptors for extracellular matrix proteins, integrins, may play a role in BK-induced signaling by targeting collagenases to the membrane, thus forming a functional signaling complex. BK-induced phosphorylation of extracellular signal-regulated protein kinase (ERK) in mIMCD-3 cells was reduced by approximately 65% by synthetic peptides containing an Arg-Gly-Asp sequence, supporting roles for integrins in BK-induced signaling.
View Article and Find Full Text PDFSodium-proton exchanger type 1 (NHE-1) is ubiquitously expressed, is activated by numerous growth factors, and plays significant roles in regulating intracellular pH and cellular volume, proliferation and cytoskeleton. Despite its importance, little is known about its regulation in renal glomerular podocytes. In the current work, we studied the regulation of NHE-1 activity by the epidermal growth factor receptor (EGFR) in cultured podocytes.
View Article and Find Full Text PDFThe human embryonic kidney (HEK) 293 cell line is widely used in cell biology research. Although HEK293 cells have been meticulously studied, our knowledge about endogenous G protein-coupled receptors (GPCR) in these cells is incomplete. While studying the effects of bradykinin (BK), a potent growth factor for renal cells, we unexpectedly discovered that BK activates extracellular signal-regulated protein kinase 1 and 2 (ERK) in HEK293 cells.
View Article and Find Full Text PDFThe 5-HT1A receptor is a prototypical member of the large and diverse serotonin receptor family. One key role of this receptor is to stimulate cell proliferation and differentiation via the extracellular signal regulated protein kinase (ERK) mitogen activated protein (MAP) kinase. There are few reports on the ability of the 5-HT1A receptor to modulate other MAP kinases such as c-Jun N-terminal kinase (JNK), which is activated by various extracellular stimuli, resulting in cell growth, differentiation, and programmed cell death.
View Article and Find Full Text PDFThe type 1 sodium-proton exchanger (NHE-1) is expressed ubiquitously and regulates key cellular functions, including mitogenesis, cell volume, and intracellular pH. Despite its importance, the signaling pathways that regulate NHE-1 remain incompletely defined. In this work, we present evidence that stimulation of the 5-hydroxytryptamine 1A (5-HT1A) receptor results in the formation of a signaling complex that includes activated Janus kinase 2 (Jak2), Ca2+/calmodulin (CaM), and NHE-1, and which involves tyrosine phosphorylation of CaM.
View Article and Find Full Text PDFObjectives: Active mRNA distribution in the form of ribonucleoprotein particles moving along microtubules has been shown in several cell types, but not yet in cardiocytes. This study addresses two hypotheses: 1) a similar mRNA distribution mechanism operates in cardiocytes; 2) decoration of microtubules with microtubule-associated proteins compromises this distribution.
Methods: To visualize ribonucleoproteins in cultured neonatal rat cardiocytes, they were transfected with vectors encoding zipcode binding protein-1 and Staufen fused with GFP.
We have previously shown that stimulation of extracellular signal-regulated protein kinase (ERK) by bradykinin (BK) in murine inner medullary collecting duct (mIMCD)-3 cells is mediated by epidermal growth factor receptor (EGFR) transactivation. The mechanism of EGFR transactivation seemed to be novel, because it does not require phospholipase C, Ca(2+), calmodulin, protein kinase C, G alpha(i) subunits, or EGFR-B(2) receptor heterodimerization. In this study, we demonstrated the involvement of matrix metalloproteinases (MMPs) in B(2) receptor-induced EGFR transactivation using their broad-spectrum inhibitors batimastat and N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-l-tryptophan methylamide (Galardin) (GM-6001).
View Article and Find Full Text PDFNa(+)/H(+) exchangers are ubiquitous in mammalian cells, carrying out key functions, such as cell volume defense, acid-base homeostasis, and regulation of the cytoskeleton. We used two screening technologies (FLIPR and microphysiometry) to characterize the signal transduction pathway used by the bradykinin B(2) receptor to activate Na(+)/H(+) exchange in two cell lines, KNRK and CHO. In both cell types, B(2) receptor activation resulted in rapid increases in the rate of proton extrusion that were sodium-dependent and could be blocked by the Na(+)/H(+) exchange inhibitors EIPA and MIA or by replacing extracellular sodium with TMA.
View Article and Find Full Text PDFWe examined the relationship between mitogen-activated MEK (mitogen and extracellular signal-regulated protein kinase kinase) and phosphorylation of the gene product encoded by retinoblastoma (hereafter referred to as Rb) in vascular smooth muscle cells. Brief treatment of the cells with 100 nm angiotensin II or 1 microm serotonin resulted in serine phosphorylation of Rb that was equal in magnitude to that induced by treating cells for 20 h with 10% fetal bovine serum ( approximately 3 x basal). There was no detectable rapid phosphorylation of two close cousins of Rb, p107 and p130.
View Article and Find Full Text PDFThe purposes of this study were to test 1) the relationship between two widely studied mitogenic effector pathways, and 2) the hypothesis that sodium-proton exchanger type 1 (NHE-1) is a regulator of extracellular signal-regulated protein kinase (ERK) activation in rat aortic smooth muscle (RASM) cells. Angiotensin II (Ang II) and 5-hydroxytryptamine (5-HT) stimulated both ERK and NHE-1 activities, with activation of NHE-1 preceding that of ERK. The concentration-response curves for 5-HT and Ang II were superimposable for both processes.
View Article and Find Full Text PDFThe sodium/proton exchanger type 1 (NHE-1) plays an important role in the proliferation of vascular smooth muscle cells (VSMC). We have examined the regulation of NHE-1 by two potent mitogens, serotonin (5-HT, 5-hydroxytryptamine) and angiotensin II (Ang II), in cultured VSMC derived from rat aorta. 5-HT and Ang II rapidly activated NHE-1 via their G protein-coupled receptors (5-HT(2A) and AT(1)) as assessed by proton microphysiometry of quiescent cells and by measurements of intracellular pH on a FLIPR (fluorometric imaging plate reader).
View Article and Find Full Text PDFThe type 1 sodium-hydrogen exchanger (NHE-1) is a ubiquitous electroneutral membrane transporter that is activated by hypertonicity in many cells. NHE-1 may be an important pathway for Na(+) entry during volume restoration, yet the molecular mechanisms underlying the osmotic regulation of NHE-1 are poorly understood. In the present study we conducted a screen for important signaling molecules that could be involved in hypertonicity-induced activation of NHE-1 in CHO-K1 cells.
View Article and Find Full Text PDFBradykinin (BK) has been implicated in the regulation of renal function. Activation of extracellular signal-regulated protein kinase (ERK1/2) has been demonstrated in several models of toxic or proliferative renal injury. We studied activation of ERK1/2 by BK in a cell model of the most distal part of the nephron, inner medullary collecting duct (mIMCD-3) cells.
View Article and Find Full Text PDF