Publications by authors named "Maria Gabriella Caporaso"

Conformational diseases, such as Alzheimer's, Parkinson's and Huntington's diseases as well as ataxias and fronto-temporal disorders, are part of common class of neurological disorders characterised by the aggregation and progressive accumulation of mutant proteins which display aberrant conformation. In particular, Huntington's disease (HD) is caused by mutations leading to an abnormal expansion in the polyglutamine (poly-Q) tract of the huntingtin protein (HTT), leading to the formation of inclusion bodies in neurons of affected patients. Furthermore, recent experimental evidence is challenging the conventional view of the disease by revealing the ability of mutant HTT to be transferred between cells by means of extracellular vesicles (EVs), allowing the mutant protein to seed oligomers involving both the mutant and wild type forms of the protein.

View Article and Find Full Text PDF

Lysosomal storage diseases (LSDs) comprise a group of inherited monogenic disorders characterized by lysosomal dysfunctions due to undegraded substrate accumulation. They are caused by a deficiency in specific lysosomal hydrolases involved in cellular catabolism, or non-enzymatic proteins essential for normal lysosomal functions. In LSDs, the lack of degradation of the accumulated substrate and its lysosomal storage impairs lysosome functions resulting in the perturbation of cellular homeostasis and, in turn, the damage of multiple organ systems.

View Article and Find Full Text PDF

The lysosomal compartment is a key hub for cell metabolism, and morphological alterations have been described in several pathological conditions. Here, we describe the use of amino acid analogs modified by the presence of a methyl ester group that accumulates within lysosomes. This generates an intraluminal osmotic effect able to trigger a rapid and selective expansion of the lysosomal compartment within 2 h of treatment.

View Article and Find Full Text PDF

Lysosome functions mainly rely on their ability to either degrade substrates or release them into the extracellular space. Lysosomal storage disorders (LSDs) are commonly characterized by a chronic lysosomal accumulation of different substrates, thereby causing lysosomal dysfunctions and secretion defects. However, the early effects of substrate accumulation on lysosomal homeostasis have not been analyzed so far.

View Article and Find Full Text PDF

The H1069Q substitution is the most frequent mutation of the Cu transporter ATP7B that causes Wilson disease in the Caucasian population. ATP7B localizes to the Golgi complex in hepatocytes, but, in the presence of excessive Cu, it relocates to the endo-lysosomal compartment to excrete Cu via bile canaliculi. In contrast, ATP7B-H1069Q is strongly retained in the ER, does not reach the Golgi complex and fails to move to the endo-lysosomal compartment in the presence of excessive Cu, thus causing toxic Cu accumulation.

View Article and Find Full Text PDF

Frizzled 4 belongs to the superfamily of G protein coupled receptors. The unstructured cytosolic tail of the receptor is essential for its activity. The mutation L501fsX533 in the fz4 gene results in a new COOH-tail of the receptor and causes a form of Familial exudative vitreoretinopathy.

View Article and Find Full Text PDF

E3 ubiquitin ligases give specificity to the ubiquitylation process by selectively binding substrates. Recently, their function has emerged as a crucial modulator of T-cell tolerance and immunity. However, substrates, partners and mechanism of action for most E3 ligases remain largely unknown.

View Article and Find Full Text PDF

Accumulation of unfolded proteins within the endoplasmic reticulum (ER) activates the unfolded protein response, also known as the ER stress response. We previously demonstrated that ER stress induces transcription of the ER Golgi intermediate compartment protein ERGIC-53. To investigate the molecular events that regulate unfolded protein response-mediated induction of the gene, we have analyzed the transcriptional regulation of ERGIC-53.

View Article and Find Full Text PDF