J Mol Recognit
October 2021
Using a rat model of peritonitis, we herein report the inflammatory effect induced by the lectin isolated from Vatairea guianensis (VGL) seeds in the context of interactions between VGL and both toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1). Peritoneal macrophages were stimulated with VGL for dose-dependent gene expression and release of TNF-α. In vivo results showed that VGL (1 mg/kg; intraperitoneal) induced peritonitis in female Wistar rats.
View Article and Find Full Text PDFLectins from Diocleinae subtribe species (family Leguminosae) are of special interest since they present a wide spectrum of biological activities, despite their high structural similarity. During their synthesis in plant cells, these proteins undergo post-translational processing resulting in the formation of three chains (α, β, γ), which constitute the lectins' subunits. Furthermore, such wild-type proteins are presented as isolectins or with different combinations of these chains, which undermine their biotechnological potential.
View Article and Find Full Text PDFDalbergieae tribe lectins, possessing binding affinity for galactose and mannose, present inflammatory and nociceptive effects, while those for N-acetylglucosamine are anti-inflammatory. Since the anti-inflammatory effect of the seed lectin of L. araripensis (LAL) had been already demonstrated in mice, this effect was presently evaluated in rat models of acute inflammation.
View Article and Find Full Text PDFInt J Biol Macromol
October 2018
Lectins represent a class of proteins or glycoproteins capable of reversibly binding to carbohydrates. Seed lectins from the Dalbergieae tribe (Leguminosae) have structural variability, carbohydrate specificity, and biological effects, such as inflammation, vasorelaxation and cancer antigen binding. To comprehensively address these factors, the present work aimed to establish and characterize the three-dimensional structure of Centrolobium microchaete lectin (CML) by homology modeling, investigate protein-carbohydrate interactions and evaluate its inflammatory effect on mice.
View Article and Find Full Text PDFLectins are multidomain proteins that specifically recognize various carbohydrates. The structural characterization of these molecules is crucial in understanding their function and activity in systems and organisms. Most cancer cells exhibit changes in glycosylation patterns, and lectins may be able to recognize these changes.
View Article and Find Full Text PDFFreshwater algae are rich sources of structurally biologically active metabolites, such as fatty acids, steroids, carotenoids and polysaccharides. Among these metabolites, lectins stand out. Lectins are proteins or glycoproteins of non-immune origin which bind to carbohydrates or glycoconjugates, without changing ligand structure.
View Article and Find Full Text PDFArch Biochem Biophys
September 2017
The Pisum arvense lectin (PAL), a legume protein belonging to the Vicieae tribe, is capable of specific recognition of mannose, glucose and its derivatives without altering its structure. In this work, the three-dimensional structure of PAL was determined by X-ray crystallography and studied in detail by a combination of molecular docking and molecular dynamics (MD). Crystals belonging to monoclinic space group P2 were grown by the vapor diffusion method at 293 K.
View Article and Find Full Text PDFInt J Biol Macromol
September 2017
The lectin from Platypodium elegans seeds (PELa) was purified by affinity chromatography in a mannose-agarose column. The lectin agglutinated rabbit erythrocytes and the agglutinating effect was inhibited by previous incubation with the glycoprotein fetuin, along with N-acetyl-d-glucosamine, D-mannose and its derivatives. The lectin maintained complete activity in temperatures ranging from 40 to 60°C and pH values ranging from 9 to 10.
View Article and Find Full Text PDF