Publications by authors named "Maria G Petrillo"

Article Synopsis
  • The cornea acts as a barrier to protect the eye from harmful external agents, and glucocorticoids are commonly used to treat related infections and disorders.
  • This study explored the role of the glucocorticoid receptor (GR) in the cornea, finding that GR signaling significantly influences gene regulation associated with immune responses.
  • Mice lacking GRs in their corneal epithelium showed severe eye development issues and an increased inflammatory response, indicating that GR signaling is vital for eye health and development.
View Article and Find Full Text PDF

Glucocorticoids acting via the glucocorticoid receptors (GR) are key regulators of metabolism and the stress response. However, uncontrolled or excessive GR signaling adversely affects adipose tissue, including endocrine, immune, and metabolic functions. Inflammation of the adipose tissue promotes systemic metabolic dysfunction; however, the molecular mechanisms underlying the role of adipocyte GR in regulating genes associated with adipose tissue inflammation are poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic stress can lead to cognitive and psychiatric issues, with glucocorticoids being key hormones that affect the brain's hippocampus through two receptors, GR (glucocorticoid) and MR (mineralocorticoid).
  • Researchers used genetically modified mice to study the effects of these receptors when deleted individually or together in the hippocampus, finding that knockout of both GR and MR caused significant harm, including neurodegeneration and issues in neuronal health.
  • The study found that GR and MR work together in the brain to regulate important genes related to cell survival and proliferation, indicating that both receptors are crucial for keeping hippocampal neurons healthy and functional.
View Article and Find Full Text PDF

Glucocorticoids promote CXCR4 expression by T cells, monocytes, macrophages, and eosinophils, but it is not known if glucocorticoids regulate CXCR4 in B cells. Considering the important contributions of CXCR4 to B cell development and function, we investigated the glucocorticoid/CXCR4 axis in mice. We demonstrate that glucocorticoids upregulate CXCR4 mRNA and protein in mouse B cells.

View Article and Find Full Text PDF

As an alternative to lifelong insulin supplementation, potentiation of immune tolerance in patients with type 1 diabetes could prevent the autoimmune destruction of pancreatic islet β-cells. This study was aimed to assess whether the G3c monoclonal antibody (mAb), which triggers the glucocorticoid-induced TNFR-related (Gitr) costimulatory receptor, promotes the expansion of regulatory T cells (Tregs) in SV129 (wild-type) and diabetic-prone NOD mice. The delivery of the G3c mAb via G3C hybridoma cells enveloped in alginate-based microcapsules (G3C/cps) for 3 weeks induced Foxp3 Treg-cell expansion in the spleen of wild-type mice but not in Gitr mice.

View Article and Find Full Text PDF

Glucocorticoids are potent endogenous anti-inflammatory molecules, and their cognate receptor, glucocorticoid receptor (GR), is expressed in nearly all immune cells. Macrophages are heterogeneous immune cells having a central role in both tissue homeostasis and inflammation and also play a role in the pathogenesis of some inflammatory diseases. Paradoxically, glucocorticoids have only a limited efficacy in controlling the resolution of these macrophage-related diseases.

View Article and Find Full Text PDF

T cell gene signatures are used to evaluate T cell infiltration of non-lymphoid tissues and cancers in both experimental and clinical settings. However, some genes included in the available T cell signatures are not T cell-restricted. Herein, we propose a new human T cell signature that has been developed via a six-step procedure and comprises 15 T cell restricted genes.

View Article and Find Full Text PDF

Glucocorticoids are among the most widely used drugs to treat many autoimmune and inflammatory diseases. Although much research has been focused on investigating glucocorticoid activity, it remains unclear how glucocorticoids regulate distinct processes in different cells. Glucocorticoids exert their effects through the glucocorticoid receptor (GR), which, upon glucocorticoid binding, interacts with regulatory proteins, affecting its activity and function.

View Article and Find Full Text PDF

Corticosteroids are the mainstay of therapy for many pediatric disorders and sometimes are life-saving. Both endogenous and synthetic derivatives diffuse across the cell membrane and, by binding to their cognate glucocorticoid receptor, modulate a variety of physiological functions, such as glucose metabolism, immune homeostasis, organ development, and the endocrine system. However, despite their proved and known efficacy, corticosteroids show a lot of side effects, among which growth retardation is of particular concern and specific for pediatric age.

View Article and Find Full Text PDF

Long glucocorticoid-induced leucine zipper (L-GILZ) has recently been implicated in cancer cell proliferation. Here, we investigated its role in human thyroid cancer cells. L-GILZ protein was highly expressed in well-differentiated cancer cells from thyroid cancer patients and differentiated thyroid cancer cell lines, but poorly expressed in anaplastic tumors.

View Article and Find Full Text PDF

Glucocorticoid-Induced Leucine Zipper (GILZ) is a glucocorticoid-inducible gene that mediates glucocorticoid anti-inflammatory effects. GILZ and the isoform L-GILZ are expressed in a variety of cell types, especially of hematopoietic origin, including macrophages, lymphocytes and epithelial cells, and strongly upregulated upon glucocorticoid treatment. A quantitative analysis of GILZ expression in mouse tissues is technically difficult to perform because of the presence of a pseudogene and the high homology of GILZ gene with other genes of TSC22 family.

View Article and Find Full Text PDF

Glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR, TNFRSF18, and CD357) is expressed at high levels in activated T cells and regulatory T cells (Tregs). In this review, we present data from mouse and human studies suggesting that GITR is a crucial player in the differentiation of thymic Tregs (tTregs), and expansion of both tTregs and peripheral Tregs (pTregs). The role of GITR in Treg expansion is confirmed by the association of GITR expression with markers of memory T cells.

View Article and Find Full Text PDF

Autoimmune diseases decrease life expectancy and quality of life for millions of women and men. Although treatments can slow disease progression and improve quality of life, all currently available drugs have adverse effects and none of them are curative; therefore, requiring patients to take immunosuppressive drugs for the remainder of their lives. A curative therapy that is safe and effective is urgently needed.

View Article and Find Full Text PDF

Introduction: CD4+CD25 low/-GITR+ T lymphocytes expressing forkhead box protein P3 (FoxP3) and showing regulatory activity have been recently described in healthy donors. The objective of the study was to evaluate the proportion of CD4+CD25 low/-GITR+ T lymphocytes within CD4+ T cells and compare their phenotypic and functional profile with that of CD4+CD25 high GITR- T lymphocytes in systemic lupus erythematosus (SLE) patients.

Methods: The percentage of CD4+CD25 low/-GITR+ cells circulating in the peripheral blood (PB) of 32 patients with SLE and 25 healthy controls was evaluated with flow cytometry.

View Article and Find Full Text PDF

Background: Glucocorticoids affect peripheral immune responses, including modulation of T-cell activation, differentiation, and apoptosis. The quantity and quality of T-cell receptor (TCR)-triggered intracellular signals modulate T-cell function. Thus, glucocorticoids may affect T cells by interfering with the TCR signaling cascade.

View Article and Find Full Text PDF

The interaction of glucocorticoid-induced tumor necrosis factor receptor-family related (GITR) protein with its ligand (GITRL) modulates different functions, including immune/inflammatory response. These effects are consequent to intracellular signals activated by both GITR and GITRL. Previous results have suggested that lack of GITR expression in GITR(-/-) mice decreases the number of leukocytes within inflamed tissues.

View Article and Find Full Text PDF

Objective: CD4(+)CD25(low)GITR(+) T lymphocytes expressing FoxP3 and showing regulatory function have been recently described in healthy donors (HD). The objective of the study was to investigate their presence and role in patients with primary SS (pSS).

Methods: CD4(+)CD25(low)GITR(+) cells circulating in peripheral blood (PB) of patients with pSS were isolated by MACS technique, their phenotype was studied by flow cytometry and real-time PCR, and their function was studied by in vitro co-culture.

View Article and Find Full Text PDF

As many members of the tumor necrosis factor receptor superfamily, glucocorticoid-induced TNFR-related gene (GITR) plays multiple roles mostly in the cells of immune system. CD8(+) T cells are key players in the immunity against viruses and tumors, and GITR has been demonstrated to be an essential molecule for these cells to mount an immune response. The aim of this paper is to focus on GITR function in CD8(+) cells, paying particular attention to numerous and recent studies that suggest its crucial role in mouse disease models.

View Article and Find Full Text PDF

Glucocorticoid-induced TNFR-related (gitr) is a gene coding for a member of the TNF receptor superfamily. GITR activation by its ligand (GITRL) influences the activity of effector and regulatory T cells, thus participating in the development of immune response against tumours and infectious agents, as well as in autoimmune and inflammatory diseases. Notably, treating animals with GITR-Fc fusion protein ameliorates autoimmune/inflammatory diseases while GITR triggering, by treatment with anti-GITR mAb, is effective in treating viral, bacterial and parasitic infections, as well in boosting immune response against tumours.

View Article and Find Full Text PDF

Psoriasis is a chronic inflammatory disease with a complex pathophysiology and a multigenic background. Autoimmunity and genetic hallmarks couple to confer the disease, which is characterized by chronic plaques (85-90% of all cases) and/or psoriasis arthritis (PsA), and involve the peripheral and sacro-iliac joints, nails, and skeleton. Dissecting the ethiopathogenetic mechanisms of psoriasis and PsA is a major basic research challenge.

View Article and Find Full Text PDF

Treg subsets play a role in sustaining peripheral tolerance, are characterized by markers such as forkhead winged-helix transcription factor (FOXP3) and CD25, and produce suppressive cytokines, such as IL-10 and TGF-β. Glucocorticoid-induced TNF receptor family-related (GITR) protein has been suggested to regulate Treg activity in mice. The aim of our study was to investigate GITR expression in human CD4(+) T lymphocytes and its possible role in Treg function.

View Article and Find Full Text PDF

Glucocorticoid-Induced TNFR family Related gene (GITR), a Tumor Necrosis Factor Receptor Superfamily (TNFRSF) member involved in immune/inflammatory processes, has been previously shown to regulate T cell activation. To study GITR role in antigen presenting cells, we evaluated the capability of bone marrow derived dendritic cells (BMDC) from GITR(-/-) mice to stimulate the activation of CD4(+)CD25(-) T lymphocytes. We found that GITR(-/-) BMDC are weaker stimulators of T cell proliferation than GITR(+/+) BMDC, either in syngenic or allogenic BMDC/T cell co-cultures.

View Article and Find Full Text PDF

Regulatory T cells (Treg) are a CD4(+) lymphocyte subset involved in self-tolerance and autoimmunity prevention. There is evidence for a phenotypic and/or functional impairment of this cell subset during the natural history of several chronic autoimmune/inflammatory diseases, including rheumatoid arthritis (RA). Although the intracellular transcription factor FoxP3 is thought to be the master regulator of Treg cell function, a number of other molecules expressed on the cell surface have been proposed for the identification of Treg cells.

View Article and Find Full Text PDF