Biodegradable polyesters with interconnected macroporosity, such as poly(l-lactide) (PLLA) and poly(ε-caprolactone) (PCL), have gained significant importance in the fields of tissue engineering and separation. This study introduces functional macroinitiators, specifically polycaprolactone triol (PCL) and polyethylene glycol (PEG), both OH-terminated, in the solventless ring-opening polymerization (ROP) of a liquid deep eutectic system monomer (DESm) composed of LLA and CL at a 30 : 70 molar ratio, respectively. The macroinitiators selectively initiate the organocatalyzed ROP of LLA in the DESm during the first polymerization stage, thereby modifying the PLLA architecture.
View Article and Find Full Text PDFIn this work, we report a nonaqueous one-step method to synthesize polystyrene macroporous magnetic nanocomposites through high internal phase emulsions (HIPEs) formulated with the deep eutectic solvent (DES) composed of urea:choline chloride (U:ChCl, in a 2:1 molar ratio) as the internal phase and co-stabilized with mixtures of Span 60 surfactant and non-functionalized magnetite nanoparticles (FeO NPs). The porous structure and the magnetic and lipophilic properties of the nanocomposite materials were easily tailored by varying the amount of FeO NPs (0, 2, 5 and 10 wt %) and the surfactant Span 60 (0, 5, 10, and 20 wt %) used in the precursor emulsion. The resultant nanocomposite polyHIPEs exhibit high sorption capacity toward different oils (hexane, gasoline, and vegetable oil) due to their high porosity, interconnectivity, and hydrophobic surface.
View Article and Find Full Text PDFRSC Adv
December 2020
Polydimethylsiloxane (PDMS) nanocomposite (NC) macroporous films were prepared by a Pickering high internal phase emulsion (HIPE) templating technique and used as effective dielectrics for enhancing the performance of triboelectric-nanogenerators (TENGs). HIPEs were formulated using commercial PDMS and water as the continuous and dispersed phase, respectively. The formation and solidification of PDMS-based HIPEs were possible through stabilization with silver-nanoparticles (Ag-Nps) and surfactant (Span 20) mixtures.
View Article and Find Full Text PDFMixtures of a nonionic surfactant and non-functionalized nanohydroxyapatite (NHA) enhanced the stability of oil-in-eutectic mixture high internal phase emulsions (HIPEs). Upon ring opening polymerization of the eutectic mixture composed of l-lactide and ε-caprolactone, biodegradable polyHIPEs with specific cavity sizes and selective interfacial functionalization with NHA are produced.
View Article and Find Full Text PDFWe report an alternative green strategy based on deep-eutectic solvents (DES) to deliver multiwalled carbon nanotubes (MWCNTs) for a bottom-up approach that allows for the selective interfacial functionalization of nonaqueous poly(high internal phase emulsions), poly(HIPEs). The formation and polymerization of methacrylic and styrenic HIPEs were possible through stabilization with nitrogen doped carbon nanotube (CN) and surfactant mixtures using a urea-choline chloride DES as a delivering phase. Subtle changes in CN concentration (less than 0.
View Article and Find Full Text PDFWe have demonstrated that l-lactide (LLA) forms a eutectic mixture with ε-caprolactone (CL) in a 30:70 mol ratio with a melting point of -19 °C. Taking advantage of the liquid nature and polarity at the LLA-CL eutectic mixture, we have formulated oil-in-eutectic-mixture high-internal-phase emulsions (HIPEs) by stepwise addition of the oil phase (tetradecane) into the continuous phase (mixture of surfactant and LLA-CL eutectic mixture) at room temperature and under stirring. The oil-in-LLA-CL-eutectic-mixture HIPEs were polymerized in the presence of both the organocatalysts 1,8-diazabicyclo[5.
View Article and Find Full Text PDF