Publications by authors named "Maria G Pavani"

Microtubules are dynamic structures that play a crucial role in cellular division and are recognized as an important target for cancer therapy. In search of new compounds with strong antiproliferative activity and simple molecular structure, we have synthesized four different series of compounds in which different substituents were linked to the 4- or 5-position of the 2-amino-3-(3',4',5'-trimethoxybenzoyl) thiophene system. When these compounds were analyzed in vitro for their inhibition of cell proliferation, the 4-aryl substituted derivatives had little activity.

View Article and Find Full Text PDF

The design, synthesis, and evaluation of a predictably more potent analogue of CC-1065 entailing the substitution replacement of a single skeleton atom in the alkylation subunit are disclosed and were conducted on the basis of design principles that emerged from a fundamental parabolic relationship between chemical reactivity and cytotoxic potency. Consistent with projections, the 7-methyl-1,2,8,8a-tetrahydrocyclopropa[c]thieno[3,2-e]indol-4-one (MeCTI) alkylation subunit and its isomer 6-methyl-1,2,8,8a-tetrahydrocyclopropa[c]thieno[2,3-e]indol-4-one (iso-MeCTI) were found to be 5-6 times more stable than the MeCPI alkylation subunit found in CC-1065 and slightly more stable than even the DSA alkylation subunit found in duocarmycin SA, placing it at the point of optimally balanced stability and reactivity for this class of antitumor agents. Their incorporation into the key analogues of the natural products provided derivatives that surpassed the potency of MeCPI derivatives (3-10-fold), matching or slightly exceeding the potency of the corresponding DSA derivatives, consistent with projections made on the basis of the parabolic relationship.

View Article and Find Full Text PDF

Two new series of inhibitors of tubulin polymerization based on the 2-amino-3-(3,4,5-trimethoxybenzoyl)benzo[b]thiophene molecular skeleton and its 3-amino positional isomer were synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell cycle effects. Although many more 3-amino derivatives have been synthesized so far, the most promising compound in this series was 2-amino-6-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]thiophene, which inhibits cancer cell growth at subnanomolar concentrations and interacts strongly with tubulin by binding to the colchicine site.

View Article and Find Full Text PDF

2-(3',4',5'-Trimethoxybenzoyl)-3-amino-5-aryl/heteroaryl thiophene derivatives were synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell cycle effects. SARs were elucidated with various substitutions on the aryl moiety 5-position of the thienyl ring. Substituents at the para-position of the 5-phenyl group showed antiproliferative activity in the order of F=CH(3) > OCH(3)=Br=NO(2) > CF(3)=I > OEt.

View Article and Find Full Text PDF

A new series of compounds in which the 2-amino-5-chlorophenyl ring of phenstatin analogue 7 was replaced with a 2-amino-5-aryl thiophene was synthesized and evaluated for antiproliferative activity and for inhibition of tubulin polymerization and colchicine binding to tubulin. 2-Amino-3-(3',4',5'-trimethoxybenzoyl)-5-phenyl thiophene (9f) as well as the p-fluoro-, p-methyl-, and p-methoxyphenyl substituted analogues (9i, j, and l, respectively) displayed high antiproliferative activities with IC50 values from 2.5 to 6.

View Article and Find Full Text PDF

We studied the anticancer activity of a series of new combretastatin derivatives with B-ring modifications. The structure-activity relationship (SAR) information confirmed the importance of cis-stereochemistry and of a phenolic moiety in B-ring. We selected the benzo[b]thiophene and benzofuran combretastatin analogues 11 (ST2151) and 13 (ST2179) and their phosphate prodrugs (29 and 30) for their high antitumor activity in in vitro and in vivo models.

View Article and Find Full Text PDF

Among the adenosine A(1) allosteric enhancers reported so far, compound (2-amino-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl)-(4-chlorophenyl)-methanone 1 (named T-62) has shown biological properties similar to those of PD 81,723, the reference A(1) allosteric enhancer and it has been more fully pharmacologically investigated. The preparation of the radiolabelled form of compound 1 and its characterization by saturation binding experiments are reported. These studies allowed us to demonstrate for the first time the existence of a specific, allosteric site on the A(1) receptor.

View Article and Find Full Text PDF

The design, synthesis, and preliminary biological evaluation of the first potent radioligand antagonist for the P2X(7) receptor, named [(3)H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine (compound 13), are reported. This compound bound to human P2X(7) receptors expressed in HEK transfected cells with K(D) and B(max) value of 3.46+/-0.

View Article and Find Full Text PDF

2-Amino-3-benzoylthiophenes are allosteric enhancers of agonist binding to the adenosine A(1) receptor. New compounds bearing an heteroaroyl instead of the benzoyl moiety at the 3-position of the thiophene were synthesized. The phenyl ring was replaced with heterocycles that possess heteroatoms able to form hydrogen bonds (2-furanyl, 2-benzofuranyl, 2-pyridinyl in compounds 2-13) or with a thienyl moiety as isoster of the phenyl ring (2-thienyl, 3-thienyl and 5-halo-2-thienyl in compounds 14-29).

View Article and Find Full Text PDF

DNA minor groove binders constitute an important class of derivatives in anticancer therapy. Some of these compounds form noncovalent complexes with DNA (e.g.

View Article and Find Full Text PDF

Two potentially hydrophilic platinum (II) complexes 10 and 11 bound to the minor groove binder stallimycin (distamycin A, CAS 636-47-5) by L-cysteine and D,L-2,3-diaminopropionic acid have been synthesized. The in vitro cytotoxicity of both these complexes was evaluated against several cell lines. None of the synthesized platinum complexes showed greater activity than that of cisplatin (cis-DDP, 1) (CAS 15663-27-1).

View Article and Find Full Text PDF

The current study describes the synthesis and biological evaluation of a novel series of 2-amino-3-naphthoylthiophenes, with variable modifications at the 4- and 5-position of the thiophene as well as the naphthoyl ring. Allosteric enhancer activity was measured in several ways: (1) evaluating the effect on forskolin-stimulated cAMP accumulation in the presence of an A(1)-adenosine agonist (CPA) in Chinese hamster ovary (CHO) cells expressing the cloned human A(1)-adenosine receptor (hA(1)AR); (2) ability of these compounds to displace the binding of [(3)H]DPCPX, [(3)H]ZM 241385, and [(3)H]MRE 3008F20 to the ligand binding site of CHO cells expressing the hA(1), hA(2A), and hA(3) adenosine receptors, respectively; (3) effect on the binding of [(3)H]CCPA to membranes from CHO cells expressing hA(1)AR, to rat brain and human cortex membrane preparations containing native adenosine A(1) receptors; (4) kinetics of the dissociation of [(3)H]CCPA from CHO-hA1 membranes. The pharmacological assays compared the various activities to that of the reference compound PD 81,723 (compound 1).

View Article and Find Full Text PDF

A new series of ring constrained analogues of the P2X7 receptor antagonist KN62 (1-[N,O-bis(1,5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4- phenylpiperazine, CAS 127191-97-3) containing the 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid core with S configuration in position 3 was synthesised and their antagonist activities were tested on human macrophage cells. While KN62 is a potent antagonist of the P2X7 receptor, these novel compounds are weak antagonists of the purinergic P2X7 receptor and only one compound (5) showed appreciable activity as P2X7 antagonist, which was 30 times weaker than that reported for KN62. Along with compound 5, the derivatives 11 and 25 were the most active inhibitors in this synthesised series.

View Article and Find Full Text PDF

The reaction of Appel's salt with o-amino nitrile heterocycles 10-19 gave the corresponding 4-chloro-5-heteroimmine-1,2,3-dithiazoles 20-29 which were evaluated for their antibacterial, antifungal and antitumor activity. Although all these N-heteroimines were devoid of significant antibacterial activity, they showed significant antifungal activity. Moreover, the same derivatives represent highly versatile intermediates in heterocyclic synthesis, in fact the pyrazoleimino dithiazoles 20-26 can be converted in one step into 2-cyano derivatives of the corresponding 4-methoxy-pyrazolo[3,4-d]pyrimidines 30-35 by sodium methoxide in refluxing methanol.

View Article and Find Full Text PDF